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Abstract

We develop a novel approach to explain why AdaBoost is a successful classifier. By introducing a
measure of the influence of the noise points (ION) in the training data for the binary classification
problem,we prove that there is a strong connection between the ION and the test error.We further identify
that the ION of AdaBoost decreases as the iteration number or the complexity of the base learners
increases. We confirm that it is impossible to obtain a consistent classifier without deep trees as the base
learners of AdaBoost in some complicated situations. We apply AdaBoost in portfolio management via
empirical studies in the Chinese market, which corroborates our theoretical propositions.
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1. Introduction

Equal-weighted portfolios are one of the most important strategies in portfolio
management. They are portfolios with weights equally distributed across the se-
lected securities in the long and/or short positions. In academic research, numerous
studies have suggested that equal-weighted portfolios have a better out-of-sample
performance than other portfolios (e.g., Jobson and Korkie, 1981; James, 2003;
DeMiguel et al., 2007). Michaud (1989) and DeMiguel et al. (2007) argued that
the equal-weighted strategies do not suffer from the estimation error of the
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covariance matrix, which is vulnerable to outliers (Tu and Zhou, 2011). In in-
dustry, equal-weighted portfolios are popular across portfolio management in
practice, particularly in the hedge funds. The MSCI has issued many equal-
weighted indexes, which are “some of the oldest and best-known factor strategies
that have aimed to identify specific characteristics of stocks generating excess
return.”1

The core of constructing equal-weighted portfolios is to forecast the long and/or
short positions, which is a classification problem. Machine learning usually out-
stands when dealing with classification problems, and the research of machine
learning on classification is diverse. Devroye et al. (1996) lists numerous tradi-
tional pattern recognition research in computer science, where the pattern recog-
nition is an alias for the classification problem. Hastie et al. (2009) analyzes and
summarizes many machine learning methods, among which include lots of clas-
sification methods, such as the Linear/Quadratic Discriminant Analysis, Support
Vector Machine, Boosting, Random Forest, etc. The application of machine
learning in classification succeeds in various fields, such as email spam identifi-
cation, handwritten digit recognition, etc. In portfolio management, L�opez de
Prado (2018) explained how to apply machine learning to managing funds for
some of the most demanding institutional investors. Specifically, Creamer and
Freund (2005, 2010) applied the Boosting method in finance, and revealed its
practical value. Creamer (2012) used LogitBoost in high-frequency data for Euro
futures, and generated positive returns. Wang et al. (2012) invented the nonlinear
adaptive style rotation (N-LASR) model by applying AdaBoost in stock’s factor
strategy. They wisely incorporated benefits of different factors by the N-LASR
model, and the empirical study on the component stocks in Russel 3000 showed a
significant risk-adjusted portfolio return. Fi�evet and Sornette (2018) proposed a
decision tree forecasting model and applied it to S&P 500, which is capable
of capturing arbitrary interaction patterns and generating positive returns.
Rasekhschaffe and Jones (2019) provided an example of the machine learning
techniques to forecast the cross-section of stock returns. Gu et al. (2020) and
D’Hondt et al. (2020) gave comprehensive analysis of machine learning methods
for the canonical problem of empirical asset pricing, attributing their predicted
gains to the nonlinearity.

AdaBoost is a classification method in machine learning, inspiring a tremen-
dous amount of innovations. AdaBoost has developed for more than two decades
since Freund and Schapire (1996). Since it is less prone to overfit, Breiman praised
AdaBoost���“the best off-the-shelf classifier in the world”���at the 1996 NeurIPS
conference (Friedman et al., 2000). AdaBoost has made a significant impact on

1https://www.msci.com/msci-equal-weighted-indexes.
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machine learning and statistics. To explain AdaBoost’s overfitting resistance,
Schapire et al. (1998) proposed the “margin” theory. Meanwhile, Breiman (1998,
1999) and Friedman et al. (2000) discovered the fact that AdaBoost is equivalent
to an optimization algorithm, so Friedman (2001) put forward the Gradient
Boosting. Inspired by AdaBoost, Breiman (2001) invented the Random Forest
(RF) and believed that there are some similarities between RF and AdaBoost.
Subsequently, people generalized the Boosting methods, in which two Boosting
algorithms are widely-adopted���the XGBoost (Chen and Guestrin, 2016) and the
LightGBM (Ke et al., 2017). Till now, the family of Boosting flourishes, and
becomes a considerable part in machine learning.

Although there are many studies explaining why AdaBoost is a successful
method, people are still curious about its excellent achievement till now. Wyner
(2003) and Mease and Wyner (2008) believed that the available interpretation of
AdaBoost is “incomplete”, particularly on the explanation of its overfitting re-
sistance property. Wyner et al. (2017, p. 10) introduced a novel perspective on
AdaBoost and RF, and conjectured that their success could be explained by the
“spiked-smooth”, where spiked is “in the sense that it is allowed to adapt in very
small regions to noise points”, and smooth is “in the sense that it has been pro-
duced through averaging”. In other words, AdaBoost is a self-averaging interpo-
lating method, localizing the effect of the noise points as the iteration number
increases.

Our work is motivated by the questions from the industry: “May machine
learning strategies outperform other traditional strategies in quantitative invest-
ment? Why and how do they work?” L�opez de Prado (2018) gave a comprehensive
and systematic approach to apply machine learning methods, and highly appraised
Boosting: “We explored a number of standard black-box approaches. Among
machine learning methods, we found gradient tree boosting to be more effective
than others.” Besides, Wang et al. (2012) applied AdaBoost to select and combine
factors with consistent and interpretative performance, and Zhang et al. (2019)
proposed a Boosting method to compose portfolios which performs well. These
findings answered the first question. There is limited research concerning the
mechanism or the interpretability of machine learning in portfolio management.
However, interpretability is essential in investment (Feng et al., 2020). In detail,
Harvey et al. (2016, p. 37) argued: “. . . a factor developed from first [economic]
principles should have a lower threshold t-statistic than a factor that is discovered
as a purely empirical exercise.” Harvey (2017) proposed an example. They con-
structed portfolios based on the first, second, and third letters of the ticker sym-
bols, gaining significant excess returns. Nevertheless, most people would
not like to adopt this symbol-based portfolio, as they implied. Thus, without
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interpretability, portfolio investment is vulnerable. We must pay more attention to
the second/third questions.

To answer the “why and how” questions, we should investigate AdaBoost in the
framework of statistics to find a theoretical explanation of its outperformance and
apply them in portfolio management. Wyner et al. (2017) pointed out that: “The
statistics community was especially confounded by two properties of AdaBoost:
(1) interpolation (perfect prediction in sample) was achieved after relatively few
iterations, (2) generalization error continues to drop even after interpolation is
achieved and maintained.” They innovated the concept of “spiked-smooth” clas-
sifier created by a self-averaging and interpolating algorithm. They conjectured
that the “spiked-smooth” property renders the success of AdaBoost, and provided
many delicate examples by simulation to support their viewpoints. Thus, we would
like to narrow the gap between the theory and the simulation by strengthening their
work from a statistical perspective. To explain the “spiked-smooth” mathemati-
cally, we need to distinguish the signal and the noise within the training set in a
statistical framework first. Then, one should connect the relationship between
the “spiked-smooth” and the test error, explaining the property of overfitting
resistance.

In addition, Wyner et al. (2017) pointed out that “boosting should be used like
random forests: with large decision trees, without regularization or early stopping”.
The point is that larger and deeper decision trees are preferred to be used as the
“weak” classifiers (base learners) of AdaBoost, since they can both “interpolate”
the training set and realize the goal of “spiked-smooth”. This point contradicts
with the common sense about machine learning and statistics, and statisticians
usually believe complexity leads to overfitting. Therefore, we wonder if the
AdaBoost method can boost shallow trees when the true model is very compli-
cated, just as we cannot “make bricks without straw”. We try to find out that under
what populations will the AdaBoost method be unable to achieve good perfor-
mance if the base learners are very weak. We want to demonstrate the viewpoints
of Wyner et al. (2017) in a mathematical framework.

In this paper, we show that how AdaBoost can dig out more nonlinear infor-
mation in the training set without increasing the test error. Our work is composed
of three parts. First, to concrete the abstract concept “spiked-smooth” into a
measurable value, we define a measure of the influence of the noise points in the
training set for a given method. The measure can also be regarded as a measure of
the localization of the given method. We discover the connection between the
measure and the out-of-sample performance. That is, under certain conditions, if
the influence of the noise points is not essential, then the test error will be low. A
toy example clarifies the theorem, intuitively illustrating the influence of the noise
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and explaining why it controls the test error. For AdaBoost, we show that, as the
number of iterations increases or the depth of the base learners grows, it becomes
more robust to the influence of the noise, and thus lead to a lower test error.
Therefore, we give a theoretical explanation about why AdaBoost has a good
performance without overfitting in noisy training sets.

Second, we confirm that it is a better choice to use deeper/larger decision trees
as base learners of AdaBoost in the sense of digging out complex information.
Specifically, we propose several counterexamples that AdaBoost based on shallow
decision trees fails to handle, even after iterating infinite times. We generalize the
results and indicate that AdaBoost based on shallow decision trees would fail in
recognizing a certain kind of information, while the one based on deep decision
trees could easily solve out. Therefore, these findings suggest that AdaBoost based
on deep decision trees maybe better.

Third, the empirical studies in the Chinese market corroborate our theoretical
propositions. The theoretical results about the interpolation and the localization of
AdaBoost in the previous parts of this paper is verified by constructing an optimal
portfolio strategy. Besides, the result also illustrates the good performance of the
equal-weighted portfolio generated by the selected optimal classifier trained by
AdaBoost.

The outline of this paper is as follows. Section 2 introduces a measure of
“spiked-smooth”, illustrates the relationship between the measure and the test
error, and explains the success of AdaBoost. Section 3 identifies that AdaBoost
based on deep trees can dig out more information, while the one based on shallow
trees fails. Section 4 provides empirical studies of AdaBoost in the Chinese stock
market. Section 5 concludes.

2. The Influence of the Noise Points and AdaBoost

In this section, we give a strict definition for the “spiked-smooth” suggested by
Wyner et al. (2017) in the framework of the Bayes classifier. Under the framework,
we explain the success of AdaBoost by developing a concrete measure.

First, we describe a background model of the binary classification problem and
the Bayes classifier, and define the signal/noise points for a given training set.
Based on these concepts, we build a bridge between the Bayes classifier and the
interpolating classifier. We define a measure of the influence of the noise points,
and specify its property. Second, we explore the connection between the measure
and the test error. Last, we explain the success of AdaBoost as the minimization of
the influence of the noise points in the sense of the “spiked-smooth”, and reveal its
potential applications in portfolio management.
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2.1. The model of the binary classification

A prediction model consists of an input vector X 2 X, an output Y 2 Y ¼ f�1g,
and a prediction classifier f : X ! Y. For simplicity, let us assume that the dis-
tribution of X is absolutely continuous with respect to the Lebesgue measure. We
restate the definition of the Bayes classifier/error (Devroye et al., 1996, p. 2) in
Definition 1 below.

Definition 1 (Bayes Classifier/Error). Given the population X and
Y 2 Y ¼ f�1g, the Bayes classifier is

f B :¼ arg min
f :X!Y

Pff ðXÞ 6¼ Yg,

and the minimum is the Bayes error q, i.e.,

q :¼ min
f :X!Y

Pff ðXÞ 6¼ Yg:

According to the definition, f B is the classifier minimizing the test error, which
can be represented by the conditional distribution PY jX in the population. One can
show f BðxÞ ¼ signðPfY ¼ 1jX ¼ xg � 0:5Þ, when the population satisfies certain
canonical conditions. There is no classifier having lower test error than f B. We give
a general representation of the test error of a classifier by the Bayes classifier in
Lemma 1 while the noise and X are independent.

Lemma 1. Given the population ðX, YÞ, the Bayes classifier f B, and the
Bayes error q, if 1fY 6¼f BðXÞg and X are independent, then, for any classifier f ,

Pff ðXÞ 6¼ Yg ¼ qPXff ðXÞ ¼ f BðXÞg þ ð1� qÞPXff ðXÞ 6¼ f BðXÞg: ð1Þ
Proof. We have

Pff ðXÞ 6¼ Yg
¼ Pff ðXÞ 6¼ Y , f ðXÞ ¼ f BðXÞg þ Pff ðXÞ 6¼ Y , f ðXÞ 6¼ f BðXÞg
¼ Pff BðXÞ 6¼ Y , f ðXÞ ¼ f BðXÞg þ Pff BðXÞ ¼ Y , f ðXÞ 6¼ f BðXÞg
¼ Pff BðXÞ 6¼ YgPXff ðXÞ ¼ f BðXÞg þ Pff BðXÞ ¼ YgPXff ðXÞ 6¼ f BðXÞg
¼ qPXff ðXÞ ¼ f BðXÞg þ ð1� qÞPXff ðXÞ 6¼ f BðXÞg:

A natural corollary of (1) is Pff ðXÞ 6¼ Yg ¼ qþ ð1� 2qÞPXff ðXÞ 6¼ f BðXÞg.
In other words, Pff ðXÞ 6¼ Yg is a linear function of PXff ðXÞ 6¼ f BðXÞg.

Next, we introduce the concept of the signal/noise points of the training set T in
the following Definition 2.
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Definition 2 (Signal/Noise Points). Given a training set T ¼ ðxi, yiÞni¼1

generated from the population ðX,YÞ and the Bayes classifier f B, a point ðxi, yiÞ
is a signal point, if f BðxiÞ ¼ yi; and it is a noise point, if f BðxiÞ 6¼ yi.

In short, the Bayes classifier f B distinguishes the signal/noise points of a
training set. Heuristically, the signal points are the points that are equal to the
output of the Bayes classifier, while the noise points are not.

We recall the definition of the interpolation classifier proposed by Wyner et al.
(2017) for coherence.

Definition 3 (Interpolating Classifier). A classifier f is an interpolating
classifier on the training set T ¼ ðxi, yiÞni¼1, if f ðxiÞ ¼ yi for all ðxi, yiÞ, i ¼
1, . . . , n.

Immediately, we can obtain a property of the interpolating classifier, i.e., its
training error is 0 on the training set T ¼ ðxi, yiÞni¼1.

Though the Bayes classifier is the best classifier in the sense of minimizing the
test error, it does not necessarily interpolate the given training set T ¼ ðxi, yiÞni¼1.
The Bayes classifier f B violates interpolation at and only at the noise points, as
implied in Definition 3. Thus, in view of the training set, the difference between an
interpolating classifier and the Bayes classifier is only on the noise points. So, we
propose a definition of a purified training set of T by converting the noise points
into the “signal” points.

Definition 4 (Purified Training Set). Given a training set T ¼ ðxi, yiÞni¼1 from
the population ðX,YÞ and the Bayes classifier f B, the purified training set of T is
defined as Tp :¼ ðxi, f BðxiÞÞni¼1.

There is no noise point in Tp. In other words, the Bayes classifier must inter-
polate the purified training set Tp. We can also rewrite the definition of the purified
training set as

Tp ¼ ðxi, �iÞni¼1, �i ¼
yi, i is a signal point;
�yi, i is a noise point:

�

The two training sets T and Tp share the same input xi’s but different outputs, and
the difference between the outputs of the two sets is only on the noise points. The
purpose is to separate out the influence of the noise points from the whole in-
formation contained in the training set T .

Last, based on the previous preparations, we propose a measure of the influence
of the noise points (ION) for a given training set T and a given methodM. It helps
us to compare the properties of different methods, such as one nearest neighbor
(1NN) or AdaBoost, on a given training set.
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Definition 5 (ION). Given themarginal probability measure ofX (PX), we define
the influence of noise (ION), a function of the training set T and the methodM:

IONðM, TÞ :¼ PXffTðXÞ 6¼ fTpðXÞg, ð2Þ
where fT is the classifier trained on the training set T using method M, and fTp is
on the purified training set Tp using methodM.

We interpret Definition 5. M represents a specific method. For instance, for
1NN, one can apply it on the training set T and Tp, which generates two classifiers
fT and fTp . Then, by comparing the two classifiers, we can get the value of ION
(1NN, T). The ION is defined according to two sets: the training set T and the
proxy of the training set generated by f B.

Although Definition 5 does not require the interpolation of the classifier f , ION
usually characterizes the performance of the method which generates interpolating
classifiers on a given training set. Meanwhile, 0 � ION � 1. If ION is low, then
the classifier is robust to the noise points on the training set of the given method,
and vice versa.

Interpolation is not necessarily bad, if it subjects to some “mechanism” (Wyner
et al., 2017). Although some interpolating classifiers “can be shown to be in-
consistent and have poor generalization error in environments with noise”, “the
claim that all interpolating classifiers overfit is problematic”. The classifiers
generated by 1NN or random forest are both interpolating classifiers, but their ION
may not be the same. Furthermore, Wyner et al. (2017) suggested: “an interpolated
classifier, if sufficiently local, minimizes the influence of noise points in other parts
of the data.” The next question is, what is the relationship between the ION and the
so-called “spiked-smooth” classifier.

2.2. The ION and the test error

In this section, we reveal the connection between the ION and the test error from
theoretical and numerical perspectives.

First, we prove that, under certain conditions, the lower the ION, the lower the
test error.

Proposition 1. Given the population ðX, YÞ such that 1fY 6¼ f BðXÞg is
independent of X, let f ð1ÞT and f ð2ÞT denote the classifiers generated from two
different methods Mð1Þ and Mð2Þ on the training set T , and f ð1ÞTp

and f ð2ÞTp
denote

the ones generated from Mð1Þ and Mð2Þ on the purified training set Tp,
respectively. If

f ð1ÞTp
ðxÞ ¼ f ð2ÞTp

ðxÞ ¼ f BðxÞ, a:s:, ð3Þ
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and

IONðMð1Þ,TÞ < IONðMð2Þ,TÞ,

then

Pff ð1ÞT ðXÞ 6¼ Yg < Pff ð2ÞT ðXÞ 6¼ Yg: ð4Þ

Proof. Because of (3), we have

PXff ð1ÞT ðXÞ 6¼ f BðXÞg ¼ PXff ð1ÞT ðXÞ 6¼ f ð1ÞTp
ðXÞg ¼ IONðMð1Þ,TÞ < IONðMð2Þ, TÞ

¼ PXff ð2ÞT ðXÞ 6¼ f ð2ÞTp
ðXÞg ¼ PXff ð2ÞT ðXÞ 6¼ f BðXÞg:

Thus, by Lemma 1, (4) holds.

Proposition 1 shows that the ION controls the test error. Specifically, it means
that, if the two methods could reach the Bayes classifier in the purified training set,
then the method with lower ION outperforms the others in the sense of the test
error. For instance, Mð1Þ might indicate 1NN, while Mð2Þ indicate AdaBoost.

However, the condition (3) is slightly unnatural. It is so strong that it could only
hold in several particular training sets. We therefore weaken the original condi-
tion (3) and establish a more natural condition in Theorem 1 below.

Theorem 1. Given the population ðX, YÞ such that 1fY 6¼f BðXÞg is independent of X,
let f ð1ÞT and f ð2ÞT denote the classifiers generated from two different methods Mð1Þ

and Mð2Þ on the training set T , and f ð1ÞTp
and f ð2ÞTp

denote the ones generated from
Mð1Þ and Mð2Þ on the purified training set Tp, respectively. The size of the
training set T or Tp is n. If

lim
n!1Pff ðj ÞTp

ðXÞ 6¼ Yg ¼ q, j ¼ 1, 2, ð5Þ

and

lim sup
n!1

[IONðMð1Þ,TÞ � IONðMð2Þ,TÞ] < 0, ð6Þ

then

lim sup
n!1

[Pff ð1ÞT ðXÞ 6¼ Yg � Pff ð2ÞT ðXÞ 6¼ Yg] < 0: ð7Þ

Proof. To begin with, by Lemma 1, (5) is equivalent to

lim
n!1PXff ðj ÞTp

ðXÞ 6¼ f BðXÞg ¼ 0, j ¼ 1, 2, ð8Þ

Success of AdaBoost and its application in portfolio management
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Then,

PXff ð1ÞT ðXÞ 6¼ f BðXÞg � PXff ð2ÞT ðXÞ 6¼ f BðXÞg
� ðPXff ð2ÞT ðXÞ 6¼ f BðXÞ, f ð2ÞT ðXÞ 6¼ f ð2ÞTp

ðXÞg
þ PXff ð2ÞT ðXÞ 6¼ f BðXÞ, f ð2ÞT ðXÞ ¼ f ð2ÞTp

ðXÞgÞ
¼ PXff ð1ÞT ðXÞ 6¼ f BðXÞ, f ð1ÞT ðXÞ 6¼ f ð1ÞTp

ðXÞg
� PXff ð2ÞT ðXÞ 6¼ f BðXÞ, f ð2ÞT ðXÞ 6¼ f ð2ÞTp

ðXÞg
þ PXff ð1ÞT ðXÞ 6¼ f BðXÞ, f ð1ÞT ðXÞ ¼ f ð1ÞTp

ðXÞg
� PXff ð2ÞT ðXÞ 6¼ f BðXÞ, f ð2ÞT ðXÞ ¼ f ð2ÞTp

ðXÞg
¼ PXff ð1ÞTp

ðXÞ ¼ f BðXÞ, f ð1ÞT ðXÞ 6¼ f ð1ÞTp
ðXÞg

� PXff ð2ÞTp
ðXÞ ¼ f BðXÞ, f ð2ÞT ðXÞ 6¼ f ð2ÞTp

ðXÞg
þ PXff ð1ÞTp

ðXÞ 6¼ f BðXÞ, f ð1ÞT ðXÞ ¼ f ð1ÞTp
ðXÞg

� PXff ð2ÞTp
ðXÞ 6¼ f BðXÞ, f ð2ÞT ðXÞ ¼ f ð2ÞTp

ðXÞg
¼: A ð1Þ

n � A ð2Þ
n þ B ð1Þ

n � B ð2Þ
n :

By (8), we have

lim
n!1PXff ðj ÞTp

ðXÞ 6¼ f BðXÞ, f ðj ÞT ðXÞ ¼ f ðj ÞTp
ðXÞg ¼ 0, j ¼ 1, 2,

and thus limn!1 B ðj Þ
n ¼ 0, j ¼ 1, 2. By (8), we also have

lim
n!1ðA

ðj Þ
n � PXff ðj ÞT ðXÞ 6¼ f ðj ÞTp

ðXÞgÞ ¼ 0, j ¼ 1, 2,

so, by (2), one can show that A ðj Þ
n and IONðMðj Þ,TÞ share the same limit, j ¼ 1, 2.

Therefore,

lim
n!1 [ðPXff ð1ÞT ðXÞ 6¼ f BðXÞg � PXff ð2ÞT ðXÞ 6¼ f BðXÞgÞ

� ðIONðMð1Þ,TÞ � IONðMð2Þ,TÞÞ] ¼ 0:

Because of (6), we have

lim sup
n!1

[PXff ð1ÞT ðXÞ 6¼ f BðXÞg � PXff ð2ÞT ðXÞ 6¼ f BðXÞg] < 0:

Further, by Lemma 1, (7) holds.

We interpret Theorem 1. First, (5) is a very weak condition. It assumes the two
methods are consistent on the purified training set Tp. In fact, many classical
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methods have been proved to be consistent. Furthermore, because there is no noise
point in Tp, the consistency on Tp is easier to achieve than on T . Even the
notoriously easy-to-overfit method, 1NN, is consistent in such a good training set
Tp but not necessarily consistent in T , according to the Cover–Hart inequality
(Cover and Hart, 1967).

Second, (6) is about the property of some methods regarding a certain training
set. Instead of subjectively describing the property of the methods, it measures the
influence of the noise points in the particular training set objectively.

Third, according to Theorem 1, the decrease of ION implies that the method is
minimizing the influence of the noise points and thus enhancing the generalization
ability. It means that, for most methods, the ION is a good indicator of the test
error.

Fourth, there is no natural conflict between interpolation and lower ION. For a
classifier, the purpose of interpolating is to take all information contained in the
signal points as much as possible, while the goal of lowering ION is to reduce the
impact attributed to the noise points.

In order to have a concrete understanding of Proposition 1 and Theorem 1, we
give a 2-dim toy example. First, the population is

PfY ¼ 1jX ¼ xg ¼ 0:1, if x1 < 0,
0:9, if x1 � 0,

�

where X is uniformly distributed in ð�1, 1]2. In other words, only the first di-
mension of X is relevant to Y , while the second dimension contributes no infor-
mation. One can easily solve the Bayes classifier f BðxÞ ¼ signfx1g and the Bayes
error q ¼ 0:1.

Second, we randomly generate a training set T with a size n ¼ 500, as in Fig. 1.
The training set T is composed of 460 signal points and 40 noise points. Roughly
speaking, the yellow triangles to the left and the blue circles to the right are all
noise points. Particularly, on the left and bottom side of the graph in Fig. 1, there is
a solid triangle xi0 ¼ ð�0:79, � 0:41Þ, which is the noise point that would be
discussed later.

Third, we apply two methods, Mð1Þ (1NN) and Mð2Þ (AdaBoost2), to generate
interpolating classifiers on the training set T , respectively. Figure 2(a) is the
classifier f 1NNT generated by method 1NN, while 2(b) f AdaBoostT . The purple vertical
dotted line (x1 ¼ 0) is the watershed of f B, while the black solid lines are the
decision boundaries of f Mð�Þ

T . Both classifiers are interpolating, which means that
f M

ð�Þ
T ðxiÞ ¼ yi, 8 i, even though they are from different methods.

2To be more specific, for the AdaBoost we used, the base learners are decision trees with a maximum
depth 4, and the number of iterations is 50.

Success of AdaBoost and its application in portfolio management

2142001-11



Fourth, we argue that the ION of AdaBoost is lower than that of 1NN on the
training set T . The classifiers in Fig. 2 are different: The decision boundary of 1NN
in Fig. 2(a) is smooth and natural, while that of AdaBoost in Fig. 2(b) is sharp and
uneven. However, we argue that the sharp and uneven is better than the smooth and
natural in the sense of minimizing and localizing the influence of the noise points.
For the isolated noise points, the regions surround them in 2(b) are smaller and

(a) f 1NNT (b) f AdaBoostT

Fig. 2. The training set T and the classifiers: AdaBoost has lower ION than 1NN.

Fig. 1. The training set T .
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narrower than that in 2(a). In detail, we focus on the particular noise point lies at
about xi0 ¼ ð�0:79, � 0:41Þ, which is the solid triangle. The area around xi0 of
f AdaBoostT in 2(b) is very small, while that of f 1NNT in 2(a) is a big irregular
polygon���the influence of the noise point xi0 seems to be lower for AdaBoost
than 1NN.3

Last, we calculate the ION and the test error, summarized in Table 1, where
IONð1NN,TÞ � 0:08 and IONðAdaBoost, TÞ � 0:04, Pff 1NNT ðXÞ 6¼ Yg � 0:17
and Pff AdaBoostT ðXÞ 6¼ Yg � 0:13. We can observe that the results are in line with
our theorem, i.e., the lower the ION, the lower the test error.

Overall, this section connects the ION and the test error. Both the theoretical
derivation and the toy example of simulation demonstrate the importance of ION.
Particularly, the toy example explains why 1NN is easy to overfit, while AdaBoost
not. However, AdaBoost is only a general term for a class of methods, since both
the base learners and the number of iterations need to be specified. By choosing
different kinds of base learners and different numbers of iterations, we can generate
a tremendous amount of specific methods. In Sec. 2.3, we take a close look at the
performance of AdaBoost with different hyperparameters from our new perspec-
tive: ION.

2.3. The ION and AdaBoost

AdaBoost mainly has two hyperparameters. One of them is the complexity of the
base learners. The decision trees are one of the most popular base learners of
AdaBoost, which is the classical base learner in the monograph Hastie et al.
(2009). In this paper, we use the maximum depth of decision trees to indicate the
complexity of the base learners. The deeper the decision trees, the more complex
the base learners, and the more complex the AdaBoost. The other is the number of
iterations, which is the number of the base learners added in total. The higher the
number of iterations, the more complex the AdaBoost.

3It is noteworthy that the influence of the noise points are acting jointly rather than individually, but it
does not matter in this heuristic case.

Table 1. The ION and the test error.

Method ION Training error Test error

f B ��� ��� 0.10

Mð1Þ ¼ 1NN 0.08 0 0.17

Mð2Þ ¼ AdaBoost 0.04 0 0.13
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This section corroborates the conclusion of Wyner et al. (2017) with our newly
defined concept ION. We show their conclusion that AdaBoost based on large
decision trees without early stopping is better. We want to show that AdaBoost
generates interpolating classifiers, and both the ION and the test error decrease as
the depth of the base learners and the number of iterations increase. Instead of
comparing AdaBoost with 1NN, we digest AdaBoost itself with different para-
meters in details via high-dimensional population of simulation.

The simulation population is

PfY ¼ 1jX ¼ xg ¼ 0:1, if x1 � x2 � x3 < 0,
0:9, if x1 � x2 � x3 � 0,

�

where X is uniformly distributed in ð�1, 1]6. We randomly generate a training
set T with n ¼ 500, and compare the results of AdaBoost with different
hyperparameters.

In order to explain the reason why AdaBoost without early stopping might be
better, we compare the results of AdaBoost with different numbers of iterations
m ¼ 1, 2, . . . , 250 but the same maximum depth of the base decision trees. The
maximum depth is set as 5. We denote the corresponding classifiers by f ðmÞT ,
m ¼ 1, 2, . . . , 250.

The results are in Fig. 3. The x-axis in the figure represents the number of
iterations m. We clarify the three lines in detail. The green dashed line is the
training error of f ðmÞT on its training set T , the red dashed-dotted line is the test error
of f ðmÞT , and the blue solid line is the ION of AdaBoost in the training set:

Fig. 3. The performance of AdaBoost regarding to m ¼ 1, 2, . . . , 250.

Y. Chuan et al.

2142001-14



IONðMðmÞ,TÞ. All the three lines decrease sharply when n < 20. When n � 20,
the training error remains 0, but the test error and ION keep decreasing.

From Fig. 3, we have the following observations. First, AdaBoost is minimizing
the influence of the noise points. When m � 20, the test error decreases but the
training error remains 0. A natural question is, what is AdaBoost doing? There are
many explanations. Wyner et al. (2017) believed that AdaBoost is self-averaging
and generating a “spiked-smooth” classifier by minimizing the influence of the
noise points. We corroborate their work with the blue solid line ION. When
m � 20, although the training error remains 0, the ION continues to decrease,
which reflects the decrease of the influence of the noise points. Thus, as the
number of iterations increases, AdaBoost keeps interpolating, and simultaneously
minimizes the influence of the noise points. Second, the iteration of AdaBoost can
be divided into two stages: The first stage is the sharp decrease of the training error
(m < 20), and the second stage is the decrease of ION (m � 20). The first stage
can be considered as the formation of the rough skeleton of the classifier, while the
second stage can be treated as the process of the details with the minimization of
the influence of the noise points.4

For another, we show that AdaBoost based on deep/large decision trees is
better, and explain it by ION. Specifically, we apply AdaBoost based on different
decision trees but the same number of iterations m ¼ 250, where the base decision
trees have different maximum depths from 1 to 8. In other words, the number of
the terminal leaves of the base decision trees varies from 2 to 256. We denote the
corresponding classifiers by f ðj ÞT , j ¼ 1, 2, . . . , 8.

The results are presented in Fig. 4. The x-axis in the figure represents the
maximum depth, i.e., j for f ðj ÞT . The three lines are the same as those in Fig. 3, and
so are the interpretations.

Overall, AdaBoost based on large decision trees without early stopping is
better, which can be explained as the decrease of the ION. Given the condition that
the training error is 0, the influence of the noise points decreases as the depth of the
base decision trees and the number of iterations increase.

Now, return to the main line of the paper, we show that AdaBoost would not
overfit even interpolating, when digging out complex structures of factors in
constructing equal-weighted portfolios. As it was emphasized by L�opez de Prado
(2018, p. 15), the linear methods are awfully simplistic and useless, and would
“fail to recognize the complexity of the data”. The academia and industry shift
their focus to the nonlinear ones. There are a tremendous amount of machine
learning methods applied in various data and fields in finance. Many of the

4However, the two stages cannot be divided arbitrarily, because ION may also play a role in the first
stage.
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machine learning methods suffer from the overfitting and the low interpretation.
However, AdaBoost is not heavily affected by them as illustrated above.

In Sec. 4, we give empirical studies about specific factors or strategies, and
prove the advantage of AdaBoost in portfolio management. But we want to clarify
what kind of nonlinear information can AdaBoost dig out first.

3. Base Learners of AdaBoost

AdaBoost is a boosting method. It boosts the performance of a series of base
learners, or “weak classifiers”. People usually choose shallow trees (such as
“stumps”, i.e., decision trees with only one layer) as base learners since they are
“weak” enough and thus can avoid overfitting.

However, in many fields, especially in the area of portfolio management, using
stumps as base learners may not capture the nature of the population, since the
population is usually rather complicated. Wyner et al. (2017) proposed that the
deep and large trees will allow the base learners to interpolate the data without
overfitting, and it is a better choice to use deep trees as base learners. We have
already shown the result mathematically in Sec. 2.3 from the perspective of the
ION.

In this section, we discuss the shortcomings of AdaBoost based on stumps. We
first show that stumps cannot deal with the “XOR” classification problem. Then,
we generalize the result and demonstrate that AdaBoost based on stumps cannot

Fig. 4. The performance of AdaBoost regarding to j ¼ 1, 2, . . . , 8.
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deal with populations without “comonotonicity”. These kinds of populations are
common in finance, since the investment activities in the financial world are
usually rather complicated and interactive.

3.1. The \XOR" population

In this section, we use a toy example to show that the shallow trees (especially
stumps) are not always capable to capture the patterns of the population. We
introduce the Boolean operator “exclusive OR” (XOR) first.

Definition 6 (2-XOR). The 2-XOR function is defined as XOR2 : R
2 !

f�1g such that

XOR2ðx1, x2Þ ¼
�1, if x1 � x2 � 0,
1, if x1 � x2 < 0:

�

Definition 7 (k-XOR). For k > 2, the k-XOR function, denoted as XORk, is
defined recursively as

XORkðx1, x2, . . . , xkÞ ¼ XOR2ðXORk�1ðx1, x2, . . . , xk�1Þ, xkÞ:
The Boolean operator k-XOR is an important function in computer science (for

instance, the parity check), and it is also a classical example in Hastie et al. (2009).
It can also bring insights into portfolio management, since the k-XOR can char-
acterize the interaction among different factors. There are many studies focusing
on the interaction among various factors (Asness et al., 2018). Figure 5 shows
intuitive illustrations of the 2-XOR and the 3-XOR functions. The outputs are
not the same in adjacent quadrants (or octants), which is a common pattern of
interaction.

(a) 2-XOR (b) 3-XOR

Fig. 5. Intuitions of 2-XOR and 3-XOR functions.
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Now we show that the stumps cannot deal with the classification problems with
the Bayes classifier f B ¼ XORk, even in the case that the Bayes error is 0. For
instance, if we use a stump classifier f to classify the 2-XOR function, we can
easily show that Px1, x2ff ðx1, x2Þ 6¼ XOR2ðx1, x2Þg is always 50% no matter how
the stump is trained. That is because, a stump is equivalent to a partition of R2

along the direction of one axis. After the partition, both half-spaces still contain
values of 1 (accounts for 50%) and �1 (50%), which leads to a test error 50%.

The conclusion can also be generalized to high-dimensional spaces. Let f ð�kÞ

denote a decision tree whose depth is not more than k, and f ðkÞ denote a decision
tree whose depth is k. We have the following result in Theorem 2.

Theorem 2. Applying a decision tree f ð�kÞ on the ðk þ 1Þ � XOR classification
problem will always lead to PXff ð�kÞðXÞ ¼ XORkþ1ðXÞg ¼ 50%, where
X ¼ ðx1, . . . , xkþ1Þ.
Proof. We prove the theorem by induction. The case of k ¼ 1 has already been
proved. Now we assume that our conclusion holds for f ð�k�1Þ. We want to prove
that it also holds for f ðkÞ.

Without loss of generality, we assume that the splitting variable of f ðkÞ ’s first
layer is the first feature x1, then

f ðkÞ ¼ 1fx1�cg f
ðk�1Þ
1 þ 1fx1>cg f

ðk�1Þ
2 ,

where f ðk�1Þ
1 and f ðk�1Þ

2 represent the left subtree and the right subtree of f ðkÞ ’s top
node respectively, and c is the splitting value. Let X[�1] ¼ ðx2, . . . , xkþ1Þ, then
PXff ðkÞðXÞ ¼ XORkþ1ðXÞg ¼ PXff ðk�1Þ

1 ðXÞ ¼ XORkþ1ðXÞjx1 � cgPXfx1 � cg
þ PXff ðk�1Þ

2 ðXÞ ¼ XORkþ1ðXÞjx1 > cgPXfx1 > cg:
Assuming c > 0 without loss of generality, then we have

PXff ðk�1Þ
1 ðXÞ ¼ XORkþ1ðXÞjx1 � cg
¼ PXff ðk�1Þ

1 ðXÞ ¼ XORkþ1ðXÞjx1 � c, x1 � 0gPXfx1 � 0g
þ PXff ðk�1Þ

1 ðXÞ ¼ XORkþ1ðXÞj0 < x1 � cgPXfx1 > 0g
¼ PXff ðk�1Þ

1 ðX[�1]Þ ¼ XORkðX[�1]ÞgPXfx1 � 0g
þ PXf�f ðk�1Þ

1 ðX[�1]Þ ¼ XORkðX[�1]ÞgPXfx1 > 0g,
and

PXff ðk�1Þ
2 ðXÞ ¼ XORkþ1ðXÞjx1 > cg ¼ PXf�f ðk�1Þ

2 ðX[�1]Þ ¼ XORkðX[�1]Þg:
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Our inductive assumption tells us that, for the XORk classification problem, both
f ðk�1Þ
1 and f ðk�1Þ

2 will have a 50% error. Hence, the three probabilities
PXff ðk�1Þ

1 ðX[�1]Þ ¼ XORkðX[�1]Þg, PXf�f ðk�1Þ
1 ðX[�1]Þ ¼ XORkðX[�1]Þg and

PXf�f ðk�1Þ
2 ðX[�1]Þ ¼ XORkðX[�1]Þg are all equal to 50%. Finally,

PXff ðkÞðXÞ ¼ XORkþ1ðXÞg
¼ [50%PXfx1 � 0g þ 50%PXfx1 > 0g]PXfx1 � cg þ 50%PXfx1 > cg
¼ 50%PXfx1 � cg þ 50%PXfx1 > cg
¼ 50%:

In the proof above, we suppose that each component of X would be split just
only one time. In other words, once the CART algorithm (Hastie et al., 2009,
p. 305) split a decision tree at x1, it will not split at x1 again in other layers. It is just
for clarity and conciseness, because one can use the total probability formula to
deal with more complicated situations.

Although the k-XOR is a special case that each factor interacts with other
factors, it is enough to demonstrate that shallow decision trees (especially for one-
layer stumps) may be unable to deal with factors that are not independent of each
others.

3.2. The population without \comonotonicity"

In this section, we show the shortcomings of AdaBoost based on stumps by
introducing the concept of “comonotonicity”. The conclusion in this section can be
regarded as an extension of Sec. 3.1, since the XOR function do not have the
property of comonotonicity, as we will discuss later.

Definition 8 (Comonotonic Population). A population X 2 X ¼ Rk, Y 2
Y ¼ f�1g is comonotonic, if its Bayes classifier f B satisfies: for any constant c
and any i ¼ 1, . . . , k, there exists an " > 0 such that for each a 2 ðc� ", cÞ and
b 2 ðc, cþ "Þ, the elements in

ff Bðx1, . . . , xi�1, a, xiþ1, . . . , xkÞ � f Bðx1, . . . , xi�1, b, xiþ1, . . . , xkÞ : X[�i] 2 R
k�1g

are all non-positive or all non-negative, where X[�i] ¼ ðx1, . . . , xi�1, xiþ1, . . . , xkÞ.
To give an intuition of comonotonicity, in Fig. 6, we give three examples of

populations which are not comonotonic. For Figs. 6(a)–6(c), the decision
boundaries of their Bayes classifiers form shapes of an XOR, a ring, and a di-
agonal band, respectively. The yellow (light) region takes a value of þ1, and the
blue (dark) region �1. Note that, in each figure, there both exist arrows from
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values of �1 to þ1, and arrows from values of þ1 to �1. These arrows tell us that
the populations are not comonotonic.

The following theorem shows that AdaBoost based on stumps cannot deal with
populations without comonotonicity.

Theorem 3. For a population in Rk with a Bayes classifier f Bðx1, x2, . . . , xkÞ, a
necessary condition for the classifier trained by AdaBoost based on stumps can
converge to f B as the number of iterations m ! 1 is: the population is
comonotonic.

Proof. The AdaBoost.M1 algorithm in Hastie et al. (2009, p. 339) shows that, if
the number of iterations is m, the final strong classifier f ðmÞ must takes the form

f ðmÞðx1, x2, . . . , xkÞ ¼ sign
Xm
s¼1

�sgsðx1, x2, . . . , xkÞ
" #

,

where gsð�Þ, s ¼ 1, . . . ,m are base learners (stumps). In other words, f ðsÞð�Þ must
be a linear combination of base learners.

A stump “A” with k variables can be expressed as

stumpAðx1, x2, . . . , xkÞ ¼ signðxi ffl cÞ :¼ 1, xi ffl c,

�1, otherwise,

�

where ffl2 f� , � , > , <g, and the splitting variable of the stump is the ith
feature.

Without loss of generality, we require that ffl can only be � or >. Then the
linear combination of stumps trained by AdaBoost can be represented as

f ðmÞðx1, x2, . . . , xkÞ ¼ sign Lþ
Xm
s¼1

�ssignðxis ffl csÞ
" #

:

(a) XOR (b) Ring (c) Diagonal

Fig. 6. The populations WITHOUT comonotonicity.
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where L is a constant, xis is the splitting variable of the sth stump, and cs is the
splitting value of the sth stump. Since signðxi > cÞ ¼ �signðxi � cÞ, we can adjust
all inequality signs to the same direction

f ðmÞðx1, x2, . . . , xkÞ ¼ sign Lþ
Xm
s¼1

�ssignðxis � csÞ
" #

:

For simplicity, let us consider the 2-dim case (k ¼ 2). One can generalize the
following conclusions to high-dimensional spaces similarly. According to the
splitting variable of each stump, we can separate the m stumps into two groups as

f ðmÞðx1, x2Þ ¼ sign Lþ
Xm1

i¼1

�isignðx1 � aiÞ
 !

þ
Xm2

j¼1

�jsignðx2 � bjÞ
 !" #

,

where m1 is the number of stumps with x1 as the splitting variable, m2 is the
number of stumps with x2 as the splitting variable, and m1 þ m2 ¼ m. Without loss
of generality, we assume that a1 � a2 � � � � � am1

, and b1 � b2 � � � � � bm2
.

Recall the definition of comonotonicity (Definition 8). For any constant c, take
any " > 0, a 2 ðc� ", cÞ and b 2 ðc, cþ "Þ. We sort a, b, c and a1, . . . , am1

to-
gether as

am1, a
� a � am1, aþ1 � � � � � am1, c

� c � am1, cþ1 � � � � � am1, b
� b � am1, bþ1:

Then, from the expression of f ðmÞðx1, x2Þ, we have

f ðmÞða, x2Þ � f ðmÞðb, x2Þ 	
Xm1, a

i¼m1, b

�i, 8 x2,

i.e., it does not depend on x2. Similarly, we also have that f ðmÞðx1, aÞ � f ðmÞðx1, bÞ
does not depend on x1. Let m ! 1, and if the algorithm will converge, then

lim
m!1 [f ðmÞða, x2Þ � f ðmÞðb, x2Þ]

and

lim
m!1 [f ðmÞðx1, aÞ � f ðmÞðx1, bÞ]

will also be constants which do not depend on x2 and x1, respectively. Therefore,
according to the definition of comonotonicity, f ðmÞ cannot converge to f B if the
population is not comonotonic.

To show the intuition of f ðmÞ in the proof above, let f ðx1, x2Þ ¼ Lþ
ðPm1

i¼1 �isignðx1 � aiÞÞ þ ðPm2
j¼1 �jsignðx2 � bjÞÞ. Figure 7 illustrates the property

of the final strong classifier f .
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Figure 7 is a toy example of the strong classifier f with M1 ¼ 5 and M2 ¼ 5.
Figure 7(a) is the graph of the function f ðx1, x2Þ, and 7(b) is the bird’s-eye view
of 7(a). The darker the color is, the smaller the value of f takes. The value of f is
written explicitly in 7(b), which shows that, the values in row 2 are �1 greater than
row 1, and the values in row 3 are �2 greater than row 2, and so on. Similarly,
the values in column 2 are �1 greater than column 1, and the values in column 3
are �2 greater than column 2. All numbers in the grids increase or decrease the
same values, from left to right, and from bottom to top. It is the pattern of
comonotonicity.

We have already shown in Fig. 6(a) that the XOR function is not comonotonic.
Therefore, if the Bayes classifier of a population is the XOR function, it is im-
possible to give a good answer to the classification problem by training AdaBoost
based on stumps. The conclusion in this section can be regarded as a generali-
zation of Sec. 3.1.

In portfolio management, it is very common that factors may have interactions
among each others. Hence, non-comonotonic populations are not rare. Although
AdaBoost based on stumps can achieve good results in some areas, in financial
studies, just based on stumps is far from reaching the desired goal. In Sec. 4, we
use empirical studies to show that, using deeper trees as base learners of AdaBoost
is usually a better choice in portfolio management.

4. Empirical Studies

In this section, we use the data of the Chinese A-share market to give empirical
studies about the factor investing strategy based on AdaBoost. How to construct
a stock factor strategy is an open problem with long history in portfolio man-
agement. From Wang et al. (2012) invented the N-LASR to Fi�evet and

(a) (b) The bird’s-eye view of (a)

Fig. 7. An example of the strong classifier f .
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Sornette (2018) proposed a decision tree forecasting model, and Gu et al. (2020)
and D’Hondt et al. (2020) gave a comprehensive analysis of machine learning
methods for the canonical problem of empirical asset pricing, all of them agree that
it may improve the strategy performance if the prediction model can dig out
nonlinear and complex information.

Our empirical studies have two goals. On the one hand, by selecting an optimal
portfolio management strategy based on AdaBoost, we want to verify the general
theoretical results about the interpolation and localization of AdaBoost in Secs. 2
and 3. On the other hand, we want to illustrate the good performance of the equal-
weighted strategy based on AdaBoost.

In order to achieve the first goal, we give a sensitivity analysis about the depth
of the base learners (decision trees) and the number of iterations of AdaBoost on
the training set and the test set. We specifically explain the performance of Ada-
Boost that it can dig out useful information efficiently, as well as decrease the test
error.

4.1. Data

The empirical data starts in June 2002 and ends in June 2017, 181 months in total.
All stocks traded in the Chinese A-share market are included. 60 factors are used
in our strategy. The data of the factor exposures and the monthly returns are
downloaded from the Wind Financial Terminal.5 The 60 factors include not only
the fundamental factors, but also the technical factors, such as the momentum and
the turnover. All 60 factors are listed in Table 2.

The original data has been preliminarily cleaned, but we still need to do some
preprocessing before training. We remove all stocks which are not traded (or
cannot be traded due to the limit-up or limit-down in the Chinese market) during
the period we study. We remove the factors with over 10% missing data, and fill in
the missing data of other factors with 0. For each month, we assign the response
variables Y of all stocks according to their ranks of the next-month returns cross-
sectionally. The response variables of the top 50% stocks are þ1, and that of the
bottom 50% stocks are �1.

We divide all data into a training set and a test set manually. Total 181 months’
data is divided into two sets: the first 127 months’ data (June 2002–December
2012) is taken as the training set, and the last 54 months’ data (January 2013–June
2017) is taken as the test set. Then, the size of the training set is 1,93,455 (sum of
the stock numbers in all months), and the size of the test set is 1,33,277. We use

5https://www.wind.com.cn/en/Default.html.
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the training set to fit models, and then use the test set to evaluate the models and
verify our conclusions in Secs. 2 and 3.

4.2. The performance of the AdaBoost classifiers

In this section, we analyze how the performance of the classifiers trained by
AdaBoost varies with the two hyperparameters: the depth of the base learners
(decision trees), and the number of iterations. Both hyperparameters are typically
the source of overfitting in common sense. More specifically, we consider the
following hyperparameters:

. Max_Depth: The maximum depth of the base learners (decision trees), takes 2,
4, 6, 8, and 10, respectively;

. N_Steps: The number of iterations, takes 10, 20, 30, 40, 50, 100, 500, and 1000,
respectively.

In order to analyze the influence of these two hyperparameters on the fitting
ability of AdaBoost, we fix other parameters, and set the learning rates of all
models as 0.1. Both in the training set and in the test set, we use the AUC (area
under the ROC curve) to measure the performance of the models, which is a
supplement to the usual error calculation.

The performance results of all models we studied are summarized in Table 3.
Based on the results, we observe that

. The training/test AUC and the training/test error are consistent, since if the AUC
is high, the error will be low in almost every scenarios. For example, when
Max_Depth ¼ 2 and N_Steps ¼ 10 (the first model), the training AUC is
0.5412 while the training error is 0.4701; and when Max_Depth ¼ 2 and
N_Steps ¼ 20 (the second model), the training AUC is 0.5436 while the training
error is 0.4700—They vary in different directions.

. The training AUC increases monotonically as the complexity of the model
increases. Specifically, from the first model to the last model, the complexity
increases. Meanwhile, the training AUC increases from 0.5412 to 0.6828; The
training error decreases too.

. The test AUC also almost increases monotonically as the complexity of the
model increases. For instance, when Max_Depth ¼ 2 and N_Steps ¼ 10, . . . , 50
(the first–fifth models), the test AUC increases from 0.5433 to 0.5480; When
N_Steps ¼ 20 and Max_Depth ¼ 2, 4, 6 (the second, seventh and twelfth
models), the test AUC also increases from 0.5462 to 0.5490.

. The changes of the test AUC are relatively small and stable with regard to that of
the training AUC. For example, for the first 15 models, the test AUC changes
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from 0.5433 to 0.5513, while the training AUC changes from 0.5412 to 0.5946.
It suggests that the test AUC around 54% may be a stable threshold of the
model, which reflects the ability of our methods to dig out the market infor-
mation contained in our dataset. It is noteworthy that, 54% is not a bad result in
the Chinese stock market, according to the experience of the industry.

. In the training set, the performance is more sensitive to Max_Depth than to
N_Steps. In detail, given Max_Depth ¼ 2, the training AUC changes from
0.5412 to 0.5533 for N_Steps ¼ 10, . . . , 50 (the first–fifth models); However,
given N_Steps ¼ 10, the training AUC changes from 0.5412 to 0.5818 for
Max_Depth ¼ 2, 4, 6.

We find that, as the depth of the trees and the number of iterations increases, the
AUC for the test set increases stably without significant change. We can conclude
that, in these cases, the more iteration steps, the better the classifier, and the more
complex the base learner trees, the better the classifier.

Table 3. Model performance results.

Hyperparameters Training set Test set

Model no. Max_Depth N_Steps Training AUC Training error Test AUC Test error

1 2 10 0.5412 0.4701 0.5433 0.4713
2 2 20 0.5436 0.4700 0.5462 0.4741
3 2 30 0.5499 0.4665 0.5468 0.4728
4 2 40 0.5511 0.4656 0.5476 0.4716
5 2 50 0.5533 0.4636 0.5480 0.4714
6 4 10 0.5628 0.4545 0.5463 0.4671
7 4 20 0.5682 0.4515 0.5487 0.4697
8 4 30 0.5699 0.4500 0.5489 0.4681
9 4 40 0.5713 0.4505 0.5498 0.4669
10 4 50 0.5723 0.4498 0.5500 0.4669
11 6 10 0.5818 0.4418 0.5458 0.4715
12 6 20 0.5870 0.4392 0.5490 0.4683
13 6 30 0.5913 0.4353 0.5502 0.4675
14 6 40 0.5930 0.4346 0.5506 0.4676
15 6 50 0.5946 0.4338 0.5513 0.4670
16 8 100 0.6300 0.4108 0.5519 0.4663
17 8 500 0.6356 0.4071 0.5531 0.4659
18 8 1000 0.6358 0.4071 0.5532 0.4659
19 10 100 0.6731 0.3805 0.5486 0.4679
20 10 500 0.6769 0.3780 0.5502 0.4677
21 10 1000 0.6828 0.3740 0.5499 0.4681
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4.3. Strategy results

In this section, we use the classifier with good performance in the training set to
establish equal-weighted strategies in the test set (January 2013–June 2017). We
choose the 16th classifier in Table 3: Max_Depth ¼ 8, and N_steps ¼ 100.

Our strategy is: At the beginning of each month, we treat the last month’s
exposures of the 60 factors for all stocks as the input of the classifier. Then, we use
the output of the classifier to determine whether to take a long or a short position.
For the long-short strategy, we long the top 50 stocks with the highest probability
of going up, and short the bottom 50 stocks with the highest probability of going
down; For the long-only strategy, we only long the top 50 stocks with the highest
probability of going up.

(a) Long-only strategy

(b) Long-short strategy

Fig. 8. The P&L of two strategies.

Success of AdaBoost and its application in portfolio management

2142001-27



In Fig. 8, we use the CSI 300 to denote the benchmark of the buy-and-hold
strategy which we want to compare with. Figures 8(a) and 8(b) show the P&Ls of
the long-only strategy and the long-short strategy, respectively. Both the transac-
tion cost rates of taking a long position and a short position are set as 0.15%.
Table 4 shows the performance summaries of our strategies, including the win rate,
the Sharpe ratio, the average return, the standard deviation of return, and the
maximum drawdown as different measures of the performance.

From the strategy performance, we have the following results:

. The performance of our strategies is remarkable, although the AdaBoost clas-
sifier is fixed for the whole test period (January 2013–June 2017). The average
annualized return for both the long-only and the long-short strategy are over
45% during the test period. Particularly, the Chinese A-share market experi-
enced a dramatic fluctuation in 2015, but our strategies (the blue solid line) still
have a relatively robust return comparing with the CSI 300 benchmark (the
orange dashed line).

. The performance of our strategies is relatively stable, and even the maximum
drawdown of the long-only strategy is much lower than the maximum draw-
down of the benchmark CSI 300 (72.80%). The maximum drawdown 24.18% of
the long-only strategy occurred in August 2015, and 33.41% of the long-short
strategy occurred in May 2015.

Once again, we should note that the goal of these empirical studies is to find an
optimal strategy by AdaBoost which is a complicated classifier in-sample, as well
as to demonstrate that the performance of the complicated model is not bad out-of-
sample.

Overall, we can conclude from the empirical studies:

. For the equal-weighted factor investing strategy, increasing the depth of the base
learners (decision trees) and the number of iterations of AdaBoost do not sig-
nificantly reduce the out-of-sample performance;

. For factor investing strategies, it is a feasible way for investors to use the
complicated AdaBoost method to learn in the training set.

Table 4. Strategy performance results.

Strategy Win rate Sharpe ratio Average return (%) Std. (%) Maximum drawdown (%)

Long-only 0.704 1.665 47.62 28.60 24.18
Long-short 0.704 1.568 45.74 29.17 33.41
CSI 300 0.537 0.243 7.99 32.83 72.80
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5. Conclusion

In order to implement machine learning in constructing equal-weighted portfolios
interpretatively, our paper explains the success of AdaBoost and applies it in
portfolio management.

We prove that a “complex” method, even interpolating, does not necessarily
result in poor out-of-sample performance if it can lower the influence of the noise
points. AdaBoost based on large trees without early stopping could be one of such
methods, and we explain its success with our newly defined ION.

We illustrate the shortcomings of AdaBoost based on shallow trees from the
perspective of its ability to dig out nonlinear information, and emphasize the
benefits of AdaBoost based on large trees.

Our empirical studies not only corroborate the theoretical results, but also give
an effective approach to construct equal-weighted portfolios via machine learning.

Conclusively, we show that AdaBoost can minimize the influence of the noise
points while interpolating the training set, and thus have a good out-of-sample
performance. We confirm the conjectures in Wyner et al. (2017) under a mathe-
matical framework. The empirical studies verify the potential applications of
AdaBoost in portfolio management.
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