
Insurance Mathematics and Economics 114 (2024) 156–175

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Construct Smith-Wilson risk-free interest rate curves with endogenous and 

positive ultimate forward rates

Chaoyi Zhao a,∗, Zijian Jia a, Lan Wu b

a School of Mathematical Sciences, Peking University, Beijing, China
b LMEQF, School of Mathematical Sciences, Peking University, Beijing, China

A R T I C L E I N F O A B S T R A C T

JEL classification:

L51

E4

Keywords:

Ultimate forward rate (UFR)

Smith-Wilson method

Risk-free interest rate curve

Endogenous and positive

Solvency II
Chinese government bond

EURIBOR swap

We propose several methods for obtaining endogenous and positive ultimate forward rates (UFRs) for risk-free 
interest rate curves based on the Smith-Wilson method. The Smith-Wilson method, which is adopted by Solvency 
II, can both interpolate the market price data and extrapolate to the UFR. However, the method requires an 
exogenously-chosen UFR. To obtain an endogenous UFR, de Kort and Vellekoop (2016) proposed an optimization 
framework based on the Smith-Wilson method. In this paper, we prove the existence of an optimal endogenous 
UFR to their optimization problem under the condition that the cash flow matrix is square and invertible. In 
addition, to ensure the positivity of the optimal endogenous UFR during extreme time periods such as the COVID-

19 pandemic, we extend their optimization framework by including non-negative constraints. Furthermore, we 
also propose a new optimization framework that can not only generate endogenous and positive UFRs but also 
incorporate practitioners’ prior knowledge. We prove the feasibility of our frameworks, and conduct empirical 
studies for both the Chinese government bonds and the EURIBOR swaps to illustrate the capabilities of our 
methods.
1. Introduction

The risk-free interest rate term structure (RFR-TS) is a fundamental 
tool for trading, valuation, and risk management for financial institu-

tions. As the accounting principles and solvency regulations evolve in 
the past two decades, the RFR-TS has become a material factor affecting 
the valuation of assets and liabilities as well as the profit accounting for 
life insurance companies. Unfortunately, the RFR-TS cannot be directly 
observed in the market. While most central banks compile and pub-

lish yield curves with maturities less than 30 years for their sovereign 
currencies regularly based on market data of government bonds, life 
insurance companies need to assess the value of cash flows with matu-

rities much longer than 30 years. Therefore, they are concerned with 
the “far-end” forward interest rate, or the ultimate forward rate (UFR) 
named by the European Insurance and Occupational Pensions Authority 
(EIOPA) for Solvency II, which is the forward rate in the distant future 
(European Systemic Risk Board, 2017).

There are generally three categories of methods used to construct the 
RFR-TS: parametric models, interpolating models, and dynamic mod-
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E-mail address: zhaochaoyi@pku.edu.cn (C. Zhao).
1 The RFR-TS and related technical information published by the EIOPA can be found at https://www .eiopa .europa .eu /tools -and -data /risk -free -interest -rate -term -

els. Nelson and Siegel (1987) and Svensson (1994) proposed famous 
parsimonious parametric models using a given function with several 
parameters to fit the observed prices of treasury bonds. Natural cubic 
splines and Hermite cubic splines are typical interpolating models (Ha-

gan and West, 2006). There are also many dynamic models for short-

term rates, such as those proposed by Hull and White (1990) and Heath 
et al. (1992), which are mainly used for calibrating the prices of liquid 
interest rate derivatives. All three categories of models are widely used 
in modelling the RFR-TS. Models in the first two categories, which use 
functions to fit both short and long rates directly, are more commonly 
used for asset-liability assessments, solvency regulations, and risk man-

agement. Models in the third category generate the RFR-TS by fitting 
the dynamics of short rates, and they are more applicable for the pric-

ing and trading related to interest rates.

The EIOPA derives and publishes the regulatory RFR-TS for 33 cur-

rencies monthly (European Systemic Risk Board, 2017).1 These pub-

lished yield curves are used by European insurers to evaluate their in-

surance and reinsurance liabilities. The curves published by the EIOPA 
are derived using the Smith-Wilson method (Smith and Wilson, 2000), 
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which is an interpolating RFR-TS model that can both interpolate ob-

servable interest rates and extrapolate the term structure beyond the 
maturities of observable market instruments. In particular, the extrapo-

lation ability of the Smith-Wilson method allows insurers to assess the 
present value of long-term cash flows. The Smith-Wilson method con-

sists of four major elements: the market values of instruments within 
the liquid part; the last liquid point (LLP), which is the maturity be-

yond which market rates are not used2; the level of the UFR; and the 
extrapolation method, which connects the forward rate at the LLP with 
the UFR.3

Among the four elements listed above, the UFR is one of the most 
significant parameters for the Smith-Wilson method (Jørgensen, 2018). 
The UFR is defined as the sum of the expected real interest rate and the 
expected inflation rate in the distant future (EIOPA, 2019, Paragraph 
353). For example, in 2017, the UFR was set to be 4.20% for the Euro-

zone and 4.50% for China (EIOPA, 2019, Paragraph 351) by the EIOPA. 
Since then, the EIOPA announces the UFR annually and limits its fluc-

tuation within 15 basis points (EIOPA, 2019, Paragraph 352).4

In the EIOPA’s current RFR-TS framework, a positive UFR is cho-

sen exogenously before fitting the curve. However, this approach has 
some limitations. Lagerås and Lindholm (2016) pointed out that using 
a (nearly) fixed UFR is inconsistent with the risk-free interest rate stress 
scenarios specified in Solvency II. In addition, adjusting the UFR annu-

ally may not capture changes in the risk-free interest rate environment 
timely. Balter et al. (2016) found empirically that long-term rates are 
indeed uncertain, and it is not reasonable to use a fixed UFR. To ad-

dress these issues, de Kort and Vellekoop (2016, Section 5) proposed 
a method for estimating the UFR endogenously from market data. They 
characterized the Smith-Wilson family of interpolating functions as a 
solution to a functional optimization problem, and represented their 
endogenous UFR as a solution to a parameter optimization problem. 
de Kort and Vellekoop’s (2016) method not only can generate smoother 
term structures than the Smith-Wilson method adopted by the EIOPA, 
but also provides a way to estimate endogenous UFRs using market 
data.

When finding an endogenous UFR, it is natural to impose a non-

negative constraint on the UFR. Hagan and West (2006) discussed 
various interpolating methods, and argued that a good interpolating 
method should ensure that the term structure converges to a positive

level. Although short-term interest rates for several currencies, such as 
the Euro, the US dollar, and the Japanese Yen, have been negative in 
recent years, the UFRs for these currencies published by the EIOPA are 
still significantly greater than zero. In addition, the EIOPA defines the 
UFR as the forward rate in the distant future, which should be positive 
because negative interest rate policies are considered to be temporary 
tools used only in extreme situations (Marques et al., 2021, Chapter 1).

Therefore, we need to extend the method proposed in de Kort and 
Vellekoop (2016) and develop a mathematical framework to obtain en-

dogenous and positive UFRs based on the Smith-Wilson family. Our study 
focuses on exploring the mathematical theory behind generating such 
UFRs. In this article, we first prove the existence of a solution to the 
first-order condition of the optimization problem proposed in de Kort 
and Vellekoop (2016, Section 5). The result not only guarantees the 

2 The LLP is the longest maturity for which the bond market and the market of 
relevant financial instruments are deemed to be deep, liquid, and transparent. 
For example, the LLP is set to be 20 years for the Eurozone and 10 years for 
China (EIOPA, 2019, Tables 7–8).

3 The Smith-Wilson method allows the speed of convergence towards the UFR 
to be controlled and thereby the speed of convergence is chosen in such a way 
that the forward rates are, up to an immaterial difference, equal to the UFR for 
maturities at a specified convergence point (CP). Currently, the CP is set to be 
60 years for both the Eurozone and China (EIOPA, 2019, Paragraph 120).

4 More information about the UFR can be found in EIOPA (2016) and EIOPA 
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feasibility of their method, but also enhances our understanding of the 
first-order condition.

Then, we propose two new feasible methods for constructing 
the RFR-TS with endogenous and positive UFRs. Our first method 
(Method 1) is based on the framework proposed in de Kort and 
Vellekoop (2016, Section 5) and guarantees the positivity of the en-

dogenous UFRs. We prove the feasibility of the method under several 
sufficient conditions, and demonstrate its effectiveness through em-

pirical studies for both the Chinese and the European markets. We 
also show that, if the market observed data are generated by several 
conventional interest rate models—the Vasicek model and the Cox-

Ingersoll-Ross (CIR) model, the sufficient conditions can be satisfied. 
In addition, we prove that the method is consistent with the risk-free 
interest rate stress scenarios specified in Solvency II.

We further propose our second method (Method 2), which can not 
only find endogenous and positive UFRs, but also include practitioners’ 
prior knowledge regarding the UFR into the model. Method 2 solves 
a new optimization problem whose objective function contains a regu-

larization term that accounts for the distance between the endogenous 
UFR and the prior knowledge. We derive the first-order condition for 
this new objective function and prove the feasibility of Method 2. In 
particular, different from Method 1, we show that Method 2 is always 
practicable. Therefore, one can always use Method 2 as long as he/she 
has some prior knowledge regarding the UFR. Our empirical studies 
also demonstrate the stability and efficacy of Method 2.

The outline of this paper is as follows. Section 2 introduces the 
framework of the Smith-Wilson method and specifies the notations used 
in this paper. Section 3 introduces the method proposed by de Kort and 
Vellekoop (2016, Section 5), and proves the existence of a solution to 
their first-order condition. In addition, we extend their method to gen-

erate both endogenous and positive UFRs (Method 1). The theoretical 
properties of the extended method are also studied. Section 4 proposes a 
new optimization framework allowing practitioners to generate endoge-

nous and positive UFRs with prior knowledge (Method 2). Section 5

presents the empirical results of our methods using Chinese government 
bond data. Section 6 concludes. Appendix A gives the proofs of our the-

oretical results. We also discuss potential extensions of our methods in 
Appendix B, and provide more empirical studies for the European mar-

ket in Appendix C.

2. The Smith-Wilson method

For completeness, we first present the Smith-Wilson method adopted 
by the EIOPA.5

We assume that there are 𝑁 risk-free fixed income instruments 
traded in a single market at time 0, and we fit the risk-free interest 
rate term structure at time 0. There are 𝑇 possible payment times in 
the future for these instruments, say 𝑢1, 𝑢2, … , 𝑢𝑇 , respectively, where 
0 < 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑇 . For 𝑖 = 1, 2, … , 𝑁 and 𝑗 = 1, 2, … , 𝑇 , the pay-

ment of the 𝑖-th instrument at time 𝑢𝑗 is 𝑐𝑖𝑗 ≥ 0. At time 0, the market 
price of the 𝑖-th instrument is 𝑚𝑖. Let 𝑝(0, 𝑡) denote the discount curve 
(discount factor) to be constructed, which represents the price of zero-

coupon bonds with one unit payment at the maturity time 𝑡.
Smith and Wilson (2000) represented the discount factor 𝑝(0, 𝑡) by

𝑝(0, 𝑡) = (1 + 𝑔(𝑡))𝑒−𝑓∞𝑡, 𝑡 ≥ 0. (1)

Here 𝑓∞ is an exogenous parameter representing the UFR, and function 
𝑔(⋅) satisfies 𝑔 ∈ , where

5 For the consistency of notations in this article, we use the Smith-Wilson 
framework and notations used in de Kort and Vellekoop (2016). The framework 
and notations used in the original paper, Smith and Wilson (2000), are slightly 

different.
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 ∶= {𝑔 ∈ 𝐶2(ℝ+) ∶ 𝑔(0) = 0, 𝑔′′(0) = 0, lim
𝑡→+∞

𝑔′(𝑡) = 0, lim
𝑡→+∞

𝑔′′(𝑡) = 0}.

(2)

For 𝑔 ∈ , (1) implies that the instantaneous forward rate can be repre-

sented by

𝑓 (𝑡) = − 𝜕 ln𝑝(0, 𝑡)
𝜕𝑡

= − 𝑔′(𝑡)
1 + 𝑔(𝑡)

+ 𝑓∞, 𝑡 ≥ 0, (3)

which will converge to the UFR (𝑓∞) as the term 𝑡 increases without 
bound.

The function 𝑔 used by Smith and Wilson (2000) satisfies the follow-

ing optimization problem

argmin
𝑔∈

∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠, (4)

s.t. 𝑚𝑖 =
𝑇∑
𝑗=1

𝑐𝑖𝑗𝑝(0, 𝑢𝑗 ), 𝑖 = 1,2,… ,𝑁, (5)

where 𝛼 > 0 is a given tuning parameter, which is used for the tradeoff 
between the slope (𝑔′) and the curvature (𝑔′′). The optimal solution 
takes the form6

𝑔(𝑡) =
𝑁∑
𝑖=1

𝜁𝑖

𝑇∑
𝑗=1

𝑐𝑖𝑗𝑒
−𝑓∞𝑢𝑗𝑊𝛼(𝑡, 𝑢𝑗 ), 𝑡 ≥ 0, (6)

and the optimal discount curve is

𝑝(0, 𝑡) = 𝑒−𝑓∞𝑡

[
1 +

𝑁∑
𝑖=1

𝜁𝑖

𝑇∑
𝑗=1

𝑐𝑖𝑗𝑒
−𝑓∞𝑢𝑗𝑊𝛼(𝑡, 𝑢𝑗 )

]
, 𝑡 ≥ 0, (7)

where 𝜁𝑖 are constants that can be determined by substituting (7) into 
(5), and

𝑊𝛼(𝑡, 𝑢) ∶= 𝛼min(𝑡, 𝑢) − 1
2
𝑒−𝛼|𝑡−𝑢| + 1

2
𝑒−𝛼(𝑡+𝑢), 𝑡, 𝑢 ≥ 0. (8)

The function 𝑊𝛼(⋅, ⋅), which is also known as the exponential tension 
spline function, plays a crucial role in the Smith-Wilson method.

There are two parameters that need to be predetermined before us-

ing the Smith-Wilson method: the UFR 𝑓∞ and the tuning parameter 
𝛼. The UFR is exogenously determined by the EIOPA based on the ex-

pected real interest rate and the expected inflation rate of the currency 
in the distant future. The tuning parameter 𝛼 is chosen using the fol-

lowing rule (EIOPA, 2019, Paragraphs 121 and 158):

𝛼∗ = inf
{
𝛼 ∶ 𝛼 ≥ 𝛼min, |𝑓 (CP) − 𝑓∞| ≤ 𝜏

}
, (9)

where 𝑓 (⋅) is the forward rate function (3) induced by the optimal func-

tion 𝑔 (the optimal solution to (4)) given parameter 𝛼, 𝛼min is the lower 
bound of 𝛼, CP is the convergence point satisfying CP > 𝑢𝑇 , and 𝜏 is the 
maximum threshold of the convergence gap at the convergence point. 
For example, in EIOPA (2019, Paragraphs 120–121), the EIOPA sets 
these hyperparameters to be 𝛼min = 0.05, CP = 60 years, and 𝜏 = 0.0001
for both the Euro and the Chinese yuan renminbi.7

In summary, the Smith-Wilson method adopted by the EIOPA has 
the following features:

• Interpolation. The discount curve matches the market prices of in-

struments with different maturities exactly, see (5);

• Extrapolation. The forward rate converges to the exogenous UFR 
𝑓∞ as the term 𝑡 increases without bound, see (2) and (3);

• Smoothness. The discount curve is smooth enough, see (4).

6 See, for example, de Kort and Vellekoop (2016, Theorem 1).
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However, in this framework, the UFR is chosen exogenously without 
using data of the current fixed income instrument market. As a result, 
the exogenous UFR set by the EIOPA may not reflect the current market 
environment. In the following sections, we introduce the framework 
proposed in de Kort and Vellekoop (2016, Section 5), which allows 
for the determination of endogenous UFRs, and further propose several 
methods for generating UFRs that are both endogenous and positive.

3. Endogenous and positive UFRs using the de Kort-Vellekoop 
method

In this section, we propose a method for obtaining UFRs that are 
both endogenous and positive, building upon the work of de Kort and 
Vellekoop (2016), who proposed a framework for finding endogenous 
UFRs without non-negative constraints. We refer to their approach as 
the de Kort-Vellekoop method. Section 3.1 provides a brief overview of 
their optimization problem. In Section 3.2, we prove the existence of 
a solution to their optimization problem under certain regularity con-

ditions. A real data example is also given to illustrate that the optimal 
endogenous UFR obtained by their method may not be positive. To ad-

dress this issue, in Section 3.3, we propose a new method for generating 
UFRs that are both endogenous and positive, and prove the feasibility 
of our method.

3.1. The de Kort-Vellekoop method

For a given parameter 𝛼 > 0, de Kort and Vellekoop (2016, Section 
5) proposed the following optimization problem for solving endogenous 
UFRs:

argmin
𝑓∞

min
𝑔∈(𝑓∞)

∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠, (10)

where

(𝑓∞) =
{
𝑔 ∈  ∶

𝑇∑
𝑗=1

𝑐𝑖𝑗𝑒
−𝑓∞𝑢𝑗 𝑔(𝑢𝑗 ) =

𝑚𝑖 −
𝑇∑
𝑗=1

𝑐𝑖𝑗𝑒
−𝑓∞𝑢𝑗 , 𝑖 = 1,2,… ,𝑁

}
.

(11)

Compared with the original Smith-Wilson optimization problem (4), 
there are two steps to solve (10): First, for any given 𝑓∞, we solve 
an optimization problem the same as problem (4) in the original 
Smith-Wilson method. Second, we find an optimal 𝑓∞ to minimize 
the objective function. Problem (10) not only allows us to obtain a 
curve smoother than the curve generated by the original Smith-Wilson 
method, but also provides a way to obtain an endogenous UFR.

Given the observed market data, we define an 𝑁 × 𝑇 cash flow ma-

trix 𝐂 as:

[𝐂]𝑖𝑗 = 𝑐𝑖𝑗 , 𝑖 = 1,2,… ,𝑁 ; 𝑗 = 1,2,… , 𝑇 ,

and a 𝑇 × 𝑇 matrix 𝐖𝛼 as

[𝐖𝛼]𝑖𝑗 =𝑊𝛼(𝑢𝑖, 𝑢𝑗 ), 𝑖, 𝑗 = 1,2,… , 𝑇 .

Furthermore, let

𝐃𝑓∞ = diag{𝑒−𝑓∞𝑢1 , 𝑒−𝑓∞𝑢2 ,… , 𝑒−𝑓∞𝑢𝑇 }, 𝐔 = diag{𝑢1, 𝑢2,… , 𝑢𝑇 }

be two 𝑇 × 𝑇 diagonal matrices, and let

𝑚 = (𝑚1 𝑚2 ⋯ 𝑚𝑁 )⊤, 𝟏 = (1 1 ⋯ 1)⊤

be an 𝑁 -dim vector and a 𝑇 -dim vector, respectively. de Kort and 
Vellekoop (2016) concluded that the optimal 𝑓∞ for problem (10)
should satisfy the following first-order condition:
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Fig. 1. Forward curves obtained by two methods when 𝜋𝑖 = 𝑒−𝑟𝑢𝑖 for all 𝑖 = 1, 2, … , 𝑇 . (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)
(𝑚−𝐂𝐃𝑓∞𝟏)⊤(𝐂𝐃𝑓∞𝐖𝛼𝐃𝑓∞𝐂⊤)−1𝐂𝐃𝑓∞𝐔

×
(
𝟏+𝐖𝛼𝐃𝑓∞𝐂⊤(𝐂𝐃𝑓∞𝐖𝛼𝐃𝑓∞𝐂⊤)−1(𝑚−𝐂𝐃𝑓∞𝟏)

)
= 0. (12)

In particular, when 𝑁 = 𝑇 and the cash flow matrix 𝐂 is invertible, (12)

simplifies to
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(𝑢𝑖𝜋𝑖𝑒𝑓∞𝑢𝑖 )[𝐖−1
𝛼
]𝑖𝑗 (𝜋𝑗𝑒𝑓∞𝑢𝑗 − 1) = 0, (13)

where

𝜋𝑖 =
𝑇∑
𝑗=1

[𝐂−1]𝑖𝑗𝑚𝑗 (14)

can be considered as the implied price of zero-coupon bonds with ma-

turity 𝑢𝑖 calibrated using the observed data. Hereinafter, to highlight 
the central idea of our paper, we always assume that 𝑁 = 𝑇 and the 
cash flow matrix 𝐂 is invertible, and we relax this assumption in Ap-

pendix B.8

3.2. Existence of a solution to de Kort-Vellekoop’s first-order condition

In this section, we establish the existence of a solution to de Kort and 
Vellekoop’s (2016) first-order condition (13) for the endogenous UFR.

Before presenting the theorem (Theorem 1), let us first explore the 
intuition behind the first-order condition (13). The following Proposi-

tion 1 demonstrates that the solutions to (13) form a centrosymmetric 
quadratic surface.

Proposition 1. Let

𝑋 = (𝜋1𝑒𝑓∞𝑢1 𝜋2𝑒
𝑓∞𝑢2 ⋯ 𝜋𝑇 𝑒

𝑓∞𝑢𝑇 )⊤. (15)

The first-order condition (13) is equivalent to(
𝑋 − 𝐁−1𝐀𝟏

2

)⊤

𝐁
(
𝑋 − 𝐁−1𝐀𝟏

2

)
= 𝟏⊤𝐀⊤𝐁−1𝐀𝟏

4
, (16)

where

8 In practice, practitioners can always modify a rectangular 𝐂 (i.e., 𝑁 ≠ 𝑇 ) 
into a square matrix by compressing the cash flows, see Section 5.1 for an 
example. In addition, 𝐂 is often required to be a square matrix by the EIOPA 
when practitioners are using zero-coupon bond data or swap data to construct 
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risk-free interest rate curves, see EIOPA (2019, Table 9).
𝐀 =𝐔𝐖−1
𝛼

and 𝐁 = (𝐀+𝐀⊤)∕2. (17)

In particular, (16) is a centrosymmetric quadratic surface with respect to 𝑋

that centred at 𝐁
−1𝐀𝟏
2

.

With the help of (16), an equivalent form of the first-order condition 
(13), we can immediately obtain the following Corollary 1.

Corollary 1. Equation (13) with respect to 𝑋 has at least four solutions:

𝑋1 = 𝟎, 𝑋2 = 𝟏, 𝑋3 = 𝐁−1𝐀𝟏, 𝑋4 = (𝐈−𝐁−1𝐀)𝟏,

where 𝟎 is a 𝑇 -dim zero vector, 𝐈 is a 𝑇 × 𝑇 identity matrix, and 𝐀 and 𝐁
are as defined in (17).

Corollary 1 provides some important insights into the endogenous 
UFR obtained by the first-order condition (13). The first solution 𝑋1 = 𝟎
implies 𝑓∞ = −∞, which is trivial. The second solution 𝑋2 = 𝟏 implies 
that, when the spot curve is flat, i.e., there is a constant 𝑟 such that 𝜋𝑖 =
𝑒−𝑟𝑢𝑖 for all 𝑖 = 1, 2, … , 𝑇 , the endogenous UFR 𝑓∞ is exactly the same 
as the flat rate 𝑟. The third and fourth solutions satisfy 𝑋4 = 𝟏 −𝑋3. Both 
the third and the fourth solutions are nontrivial, and the explanations 
for 𝑋3 and 𝑋4 need to be studied further.

The second solution 𝑋2 motivates us to study the special case where 
the curve is flat, i.e., there exists a constant 𝑟 such that 𝜋𝑖 = 𝑒−𝑟𝑢𝑖 for all 
𝑖 = 1, 2, … , 𝑇 . Fig. 1 illustrates the forward curves obtained by both the 
Smith-Wilson method adopted by the EIOPA and the de Kort-Vellekoop 
method when 𝑟 = 2.00%, 𝑇 = 9, and 𝑢𝑖 = 1.51, 2.51, 3.60, 4.50, 5.48, 
6.49, 7.48, 8.39, 9.57, for 𝑖 = 1, 2, … , 𝑇 , respectively.9 The green dot-

ted curve is the forward curve constructed by the Smith-Wilson method, 
which distorts the curve to the exogenous UFR (4.50% in this example), 
while the orange curve constructed by the de Kort-Vellekoop method 
stays at the level of 2.00% without distortion.10 In this case, the curve 
generated by the Smith-Wilson method with an exogenous UFR is coun-

terintuitive, and the result of the de Kort-Vellekoop method is more 
reasonable.

9 The values of 𝑢𝑖 are set to be the terms of the cash flow matrix generated 
using Chinese government bonds traded in 2020 Quarter 3, see Table 1 in Sec-

tion 5.1.
10 The exogenous UFR is set to be 4.50% for China, see EIOPA (2019, Para-

graph 351). In this example, parameter 𝛼 is set to be 0.104 for the Smith-Wilson 

method and 0.050 for the de Kort-Vellekoop method, according to (9).
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Fig. 2. An example of spot and forward curves with an endogenous and negative UFR generated by the de Kort-Vellekoop method.
One should note that Corollary 1 shows the existence of vector 𝑋
but not the optimal endogenous 𝑓∞. In the following Theorem 1, we 
propose a regularity condition for the matrix 𝐖𝛼 , under which we can 
establish the existence of the optimal 𝑓∞.

Theorem 1. Given 𝛼 > 0, the first-order condition (13) with respect to 𝑓∞
has at least one solution if the regularity condition

𝑇∑
𝑗=1

[𝐖−1
𝛼
]1𝑗 > 0 (18)

holds.

Remark 1. The regularity condition (18) states that the sum of the first 
row of the inverse matrix 𝐖−1

𝛼
should be greater than zero. Our sim-

ulation and empirical studies both indicate that 𝐖−1
𝛼

almost always 
satisfies the regularity condition (18). In addition, Lemma A.1 in Ap-

pendix A implies that the regularity condition holds for large values 
of 𝛼.
160

To prove Theorem 1, we first give the following two lemmas.
Lemma 1. The matrix 𝐖−1
𝛼

is positive definite, and the diagonal entries of 
𝐖−1

𝛼
are all positive. More precisely, the 𝑖-th diagonal entry [𝐖−1

𝛼
]𝑖𝑖 satisfies 

[𝐖−1
𝛼
]𝑖𝑖 > 1∕[𝐖𝛼]𝑖𝑖 > 1∕(𝛼𝑢𝑖).

Lemma 2. Given 𝛼 > 0, denote the left-hand side of the first-order condition 
(13) by a function of 𝑓∞:

ℎ𝛼(𝑓∞) =
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(𝑢𝑖𝜋𝑖𝑒𝑓∞𝑢𝑖 )[𝐖−1
𝛼
]𝑖𝑗 (𝜋𝑗𝑒𝑓∞𝑢𝑗 − 1), 𝑓∞ ∈ℝ. (19)

Then,

(a) lim
𝑓∞→−∞

ℎ𝛼(𝑓∞)
𝑒𝑓∞𝑢1

= −𝑢1𝜋1
𝑇∑
𝑗=1

[𝐖−1
𝛼
]1𝑗 , and

(b) lim
𝑓∞→+∞

ℎ𝛼(𝑓∞)
𝑒2𝑓∞𝑢𝑇

= 𝑢𝑇 𝜋
2
𝑇
[𝐖−1

𝛼
]𝑇𝑇 .

Remark 2. Result (a) implies that ℎ𝛼(𝑓∞) converges to 0 exponentially 
as 𝑓∞ → −∞. In addition, when 

∑𝑇

𝑗=1[𝐖
−1
𝛼
]1𝑗 > 0, ℎ𝛼(𝑓∞) will be neg-

ative as 𝑓∞ approaches −∞. Result (b) implies that ℎ𝛼(𝑓∞) goes to +∞
exponentially as 𝑓∞ → +∞ because Lemma 1 implies that [𝐖−1

𝛼
]𝑇𝑇 > 0.
Thanks to Lemma 1 and Lemma 2, it is now easy to prove Theorem 1.
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Fig. 3. The graph of the function ℎ𝛼(𝑓∞) with 𝛼 = 0.130, 2020 Quarter 3.
Proof of Theorem 1. The result holds because of Lemma 1, Lemma 2, 
and the continuity of ℎ𝛼(𝑓∞) with respect to 𝑓∞. □

Theorem 1 provides a sufficient condition for the de Kort-Vellekoop 
method to guarantee the existence of an endogenous 𝑓∞. However, the 
method cannot guarantee the positivity of the endogenous 𝑓∞ in ex-

treme time periods. For instance, Fig. 2 presents an example using the 
data of Chinese government bonds traded in 2020 Quarter 3 during the 
COVID-19 pandemic.11 The forward rate curves show that the short-

term interest rates fluctuated wildly at that time. In this case, the orange 
lines converge to a negative and endogenous UFR of −2.05%, which is 
not reasonable because it is commonly believed that the forward rate 
should be positive when the term is long enough (Hagan and West, 
2006). Fig. 3 shows the corresponding graph of the function ℎ𝛼(𝑓∞), 
and one can observe that the equation ℎ𝛼(𝑓∞) = 0 has a negative solu-

tion −2.05%. Therefore, it is necessary to improve the method proposed 
by de Kort and Vellekoop (2016), and give feasible ways to obtain UFRs 
that are both endogenous and positive.

3.3. The extended de Kort-Vellekoop method

In this section, we extend the de Kort-Vellekoop method to find UFRs 
that are both endogenous and positive. We first propose our extended 
de Kort-Vellekoop method that ensures the positivity of the endogenous 
UFR (Section 3.3.1). Then, we show the feasibility of our method (Sec-

tion 3.3.2). Finally, we show that our method is consistent with the 
stress scenarios specified in Solvency II (Section 3.3.3).

3.3.1. The method

The following Method 1 provides a feasible way to obtain endoge-

nous and positive UFRs from market data. The input data includes the 
times of payments, 𝑢1, 𝑢2, … , 𝑢𝑇 ; a 𝑇 × 𝑇 cash flow matrix, 𝐂; and the 
market prices of the instruments, 𝑚1, 𝑚2, … , 𝑚𝑇 . There are also several 
model parameters: the lower bound of 𝛼, 𝛼min; the convergence point, 
CP; and the maximum threshold of the convergence gap at the conver-

gence point, 𝜏 .

Method 1. (Endogenous and positive UFRs)

11 In this example, we set 𝑁 = 𝑇 = 9. Parameter 𝛼 is set to be 0.130 for the 
de Kort-Vellekoop method and 0.101 for the Smith-Wilson method, according 
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to (9). See Section 5 for more details.
Step 1: Derive the feasible region of 𝛼:

 ∶=

{
𝛼 ∶ 𝛼 > 0,

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖
) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗 − 1

)
< 0

}
, (20)

 ∶=
{
𝛼 ∶ 𝛼 ∈, 𝛼 ≥ 𝛼min, |𝑓𝛼(CP) − 𝑓𝛼

∞| ≤ 𝜏
}
, (21)

where 𝜋1, 𝜋2, … , 𝜋𝑇 are the prices of zero-coupon bonds as defined 
in (14), 𝑓𝛼

∞ is the solution to the first-order condition (13) given 
𝛼, and 𝑓𝛼(⋅) is the forward curve generated by the Smith-Wilson 
method (3) given 𝛼 and 𝑓∞ = 𝑓𝛼

∞.

Step 2: Choose an optimal 𝛼:

𝛼∗ = inf .
Step 3: Solve the following equation for 𝑓∞:

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖−1

𝛼∗
]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
= 0.

Remark 3. Step 2 is similar to EIOPA (2019, Paragraph 158), see (9).

In summary, we first construct the feasible region of 𝛼, denoted by 
. Then, we find the optimal 𝛼∗ in . Finally, we solve for the corre-

sponding 𝑓∞ using the first-order condition given 𝛼 = 𝛼∗.

Now we explain why Method 1 can guarantee the positivity of the 
endogenous UFR. In fact, the definition of  given by (20) is equiva-

lent to  = {𝛼 ∶ 𝛼 > 0, ℎ𝛼(0) < 0}, where ℎ𝛼(⋅) is given by (19). Hence, 
ℎ𝛼∗ (0) ≤ 0. In addition, Remark 2 shows that ℎ𝛼∗ (𝑓∞) must be posi-

tive as 𝑓∞ → +∞. Therefore, the continuity of ℎ𝛼∗ (𝑓∞) guarantees the 
existence of a non-negative solution for Step 3.

Remark 4. The main difference between Method 1 and the de Kort-

Vellekoop method is the selection of 𝛼∗. In particular, Method 1 uses 
the sets  and  as defined by (20) and (21) to determine 𝛼∗, while 
the de Kort-Vellekoop method and the original Smith-Wilson method 
use (9). If the value of 𝛼∗ derived from (9) falls within the set , then 
the 𝛼∗ chosen by Method 1 and the de Kort-Vellekoop method will be 
the same, and both methods will yield the same endogenous positive 
UFR. Our empirical study in Section 5 shows that their results are the 
same in most cases, with Method 1 additionally ensuring the positiv-

ity of the UFR during extreme periods, such as when interest rates are 
wildly fluctuating during the COVID-19 pandemic. Therefore, in gen-

eral, practitioners only need to apply Method 1 during extreme time 

periods.
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Fig. 4. The graph of the function ℎ𝛼(𝑓∞) with 𝛼 = 0.400, 2020 Quarter 3.
Remark 5. Method 1 is applicable when the cash flow matrix 𝐂 is both 
square and invertible. This is because, as we discussed in Section 3.1, 
ℎ𝛼(𝑓∞) = 0 is the first-order condition only under these conditions. 
When 𝐂 is not square or not invertible, Method 1 cannot be directly em-

ployed. We provide a further discussion of this scenario in Appendix B.

Remark 6. In practice, ensuring positivity may not be the only possible 
constraint imposed on the endogenous UFR. If one wishes to impose 
other lower bounds on the UFR, she can modify Method 1 by defining 
 = {𝛼 ∶ 𝛼 > 0, ℎ𝛼(𝑓min

∞ ) < 0} in Step 1, where 𝑓min
∞ is the specified 

lower bound. Then, using similar arguments above, a solution no less 
than 𝑓min

∞ must exist for Step 3. For example, in negative interest rate 
environments, if one only wishes to introduce a negative lower bound to 
the UFR, she can set 𝑓min

∞ to be a negative number. Theoretical analysis 
of these extended constraints is beyond the scope of this paper, and we 
only consider the positivity constraint in the following discussion.

Fig. 4 provides an example of ℎ𝛼(𝑓∞). The data used in Fig. 4 is 
the same as in Fig. 2, and the only difference is that we set 𝛼 = 0.400
in Fig. 4. In this example, we have ℎ𝛼(0) = −0.4055 < 0, which implies 
that 0.400 ∈ . The endogenous UFR obtained using Method 1 given 
𝛼 = 0.400 is 2.28%, which is positive.

Now we show the theoretical properties of Method 1. In Sec-

tion 3.3.2, we prove that both sets  and  as defined in (20) and 
(21) are not empty under certain conditions. In Section 3.3.3, we show 
that our method is consistent with the risk-free interest rate scenarios 
specified in Solvency II.

3.3.2. Feasibility of the method

The following Theorem 2 provides conditions that are sufficient for 
ensuring that  and  are not empty. We set 𝜋0 ∶= 1 and 𝑢0 ∶= 0.

Theorem 2. The regions  and  as defined in (20) and (21) are not 
empty if the following condition holds:

𝑇∑
𝑖=1

(
𝑢𝑖𝜋𝑖 − 𝑢𝑖−1𝜋𝑖−1

) 𝜋𝑖 − 𝜋𝑖−1
𝑢𝑖 − 𝑢𝑖−1

< 0. (22)

In particular, (22) holds when both of the following conditions are satisfied 
for 𝑖 = 0, 1, … , 𝑇 :

a) 𝜋𝑖 is monotonically decreasing with respect to 𝑖;
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b) 𝑢𝑖𝜋𝑖 is monotonically increasing with respect to 𝑖.
Remark 7. Condition a) states that the prices of the zero-coupon bonds 
(i.e., the discount factors), 𝜋𝑖, should decrease as their maturities in-

crease. The rationale behind this condition is that longer-term bonds 
should have lower present values than shorter-term bonds. Condition 
b) requires that the product of the payment time and the discount fac-

tor, 𝑢𝑖𝜋𝑖, should increase as the maturity increases. In fact, 𝑢𝑖𝜋𝑖 is known 
as the dollar duration12 of a zero-coupon bond with maturity 𝑢𝑖, which 
is a risk measure. The intuition behind this condition is that longer-

term bonds are generally considered riskier than shorter-term bonds, 
and their prices are more sensitive to changes in interest rates.

Our empirical study in Section 5 for the Chinese government bonds 
shows that both Condition a) and Condition b) are satisfied by our data. 
Unfortunately, in low (or even negative) interest rate environments, the 
two conditions may not hold. For example, if the spot rate at maturity 
time 𝑢1, 𝑟1, is negative, we will have 𝜋1 = 𝑒−𝑢1𝑟1 > 1 = 𝜋0, which vio-

lates Condition a). Despite this, we show in Appendix C that (22) still 
holds in most cases when we use the EURIBOR swap data, even when 
Conditions a) and b) do not hold.

The following two examples illustrate that Conditions a) and b) in 
Theorem 2 can be satisfied if the spot rates are generated by two widely-

used dynamic short-term interest rate models—the Vasicek model and 
the CIR model.

Example 1 (Vasicek model). Suppose that, under the risk-neutral mea-

sure, the instantaneous spot rate 𝑟(𝑡) follows

d𝑟(𝑡) = 𝜅(𝜃 − 𝑟(𝑡))d𝑡+ 𝜎d𝑊𝑡, 𝑟(0) = 𝑟0 > 0,

where 𝜅, 𝜃, 𝜎 > 0 and 𝑊𝑡 is a standard Brownian motion. Then, the 
discount factor generated by the Vasicek model, 𝑝Vasicek(0, 𝑡), can be 
represented by (Brigo and Mercurio, 2007, Section 3.2)

𝑝Vasicek(0, 𝑡) = exp
[
1
𝜅

(
𝜃 − 𝜎2

2𝜅2 − 𝑟0

)(
1 − 𝑒−𝜅𝑡

)
− 𝜎2

4𝜅3

(
1 − 𝑒−𝜅𝑡

)2 −(𝜃 − 𝜎2

2𝜅2

)
𝑡

]
.

(23)

12 The dollar duration of a bond is defined to be the opposite value of the 
partial derivative of its price with respect to its yield, and it measures the risk 
of the change in bond value when there is a small variation in the yield. In 
particular, for a zero coupon bond with maturity 𝑢𝑖 and yield 𝑟𝑖 , its price is 

𝜋𝑖 = 𝑒−𝑢𝑖𝑟𝑖 , and its dollar duration is −𝜕𝜋𝑖∕𝜕𝑟𝑖 = 𝑢𝑖𝑒

−𝑢𝑖𝑟𝑖 = 𝑢𝑖𝜋𝑖.
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Direct calculation shows that the derivatives of 𝑝Vasicek(0, 𝑡) and 𝑡 ⋅
𝑝Vasicek(0, 𝑡) with respect to term 𝑡 are

d𝑝Vasicek(0, 𝑡)
d𝑡

= −
[
𝑟0𝑒

−𝜅𝑡 + 𝜃(1 − 𝑒−𝜅𝑡)

− 𝜎2

2𝜅2 (1 − 𝑒−𝜅𝑡)2
]
𝑝Vasicek(0, 𝑡), and

d[𝑡 ⋅ 𝑝Vasicek(0, 𝑡)]
d𝑡

= 𝑝Vasicek(0, 𝑡) + d𝑝Vasicek(0, 𝑡)
d𝑡

⋅ 𝑡,

respectively. Hence, at 𝑡 = 0, we have

d𝑝Vasicek(0, 𝑡)
d𝑡

|||𝑡=0 = −𝑟0 < 0, d[𝑡 ⋅ 𝑝Vasicek(0, 𝑡)]
d𝑡

|||𝑡=0 = 1 > 0.

Therefore, under the Vasicek dynamic, both conditions hold—𝑝Vasicek(0,
𝑡) is decreasing and 𝑡 ⋅ 𝑝Vasicek(0, 𝑡) is increasing—when the term 𝑡 is 
small.

If we additionally require that the discount factor converges to zero 
as the term goes to infinity, i.e., lim

𝑡→+∞
𝑝Vasicek(0, 𝑡) = 0, then (23) implies 

that 𝜃 − 𝜎2

2𝜅2 > 0. In this case, we have

𝑟0𝑒
−𝜅𝑡 + 𝜃(1 − 𝑒−𝜅𝑡) − 𝜎2

2𝜅2 (1 − 𝑒−𝜅𝑡)2

> 𝑟0𝑒
−𝜅𝑡 + 𝜃(1 − 𝑒−𝜅𝑡) − 𝜎2

2𝜅2 (1 − 𝑒−𝜅𝑡)

= 𝑟0𝑒
−𝜅𝑡 +

(
𝜃 − 𝜎2

2𝜅2

)
(1 − 𝑒−𝜅𝑡) > 0,

which implies that d𝑝
Vasicek(0, 𝑡)

d𝑡
< 0 for all 𝑡, and therefore, Condition 

a) always holds.13 □

Example 2 (CIR model). Suppose that, under the risk-neutral measure, 
the instantaneous spot rate 𝑟(𝑡) follows

d𝑟(𝑡) = 𝜅(𝜃 − 𝑟(𝑡))d𝑡+ 𝜎
√
𝑟(𝑡)d𝑊𝑡, 𝑟(0) = 𝑟0 > 0,

where 𝜅, 𝜃, 𝜎 > 0, and 𝑊𝑡 is a standard Brownian motion. Then the dis-

count factor generated by the CIR model, 𝑝CIR(0, 𝑡), can be represented 
by (Brigo and Mercurio, 2007, Section 3.2)

𝑝CIR(0, 𝑡) =
[

2ℎ exp((𝜅 + ℎ)𝑡∕2)
2ℎ+ (𝜅 + ℎ)(exp(𝑡ℎ) − 1)

]2𝜅𝜃∕𝜎2
⋅ exp

[
−𝑟0 ⋅

2(exp(𝑡ℎ) − 1)
2ℎ+ (𝜅 + ℎ)(exp(𝑡ℎ) − 1)

]
,

where ℎ =
√
𝜅2 + 2𝜎2. Direct calculation shows that the derivatives of 

𝑝CIR(0, 𝑡) and 𝑡 ⋅ 𝑝CIR(0, 𝑡) with respect to term 𝑡 are

d𝑝CIR(0, 𝑡)
d𝑡

=
(
𝜅(𝜅 + ℎ)

𝜎2
𝜃

[
1 − 2ℎ𝑒ℎ𝑡

2ℎ+ (𝜅 + ℎ)(𝑒ℎ𝑡 − 1)

]
− 𝑟0

2ℎ𝑒ℎ𝑡[2ℎ+ (𝜅 + ℎ)(𝑒ℎ𝑡 − 1)] − [2(𝑒ℎ𝑡 − 1)][(𝑘+ ℎ)ℎ𝑒ℎ𝑡]
[2ℎ+ (𝜅 + ℎ)(𝑒ℎ𝑡 − 1)]2

)
𝑝CIR(0, 𝑡),

and

d[𝑡 ⋅ 𝑝CIR(0, 𝑡)]
d𝑡

= 𝑝CIR(0, 𝑡) + d𝑝CIR(0, 𝑡)
d𝑡

⋅ 𝑡,

13 In fact, Condition b) may not hold when 𝑡 goes to infinity. However, in 
practice, we always use fixed income instruments with maturities less than the 
last liquidity point (LLP) (EIOPA, 2019) to construct and extrapolate interest 
rate curves. For example, the EIOPA sets the LLP to be 20 years for the Eurozone 
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and 10 years for China. Therefore, we only focus on the results when 𝑡 is small.
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ectively. Similar to the Vasicek model, for the CIR model, at 𝑡 = 0, 
also have

IR(0, 𝑡)
d𝑡

|||𝑡=0 = −𝑟0 < 0, d[𝑡 ⋅ 𝑝CIR(0, 𝑡)]
d𝑡

|||𝑡=0 = 1 > 0.

refore, under the CIR model, both conditions hold—𝑝CIR(0, 𝑡) is de-

sing and 𝑡 ⋅𝑝CIR(0, 𝑡) is increasing—when the term 𝑡 is small. In fact, 
dition a) always holds for the CIR model since the CIR model can 
rantee the positivity of interest rates, which ensures that the dis-

nt factor is decreasing. □

.3. Consistency with the stress scenarios in Solvency II
In this section, we demonstrate that Method 1 is consistent with the 
ss scenarios specified in Solvency II. Lagerås and Lindholm (2016)

nted out that using a (nearly) fixed UFR is inconsistent with the risk-

 interest rate stress scenarios. They illustrated that, for long tenors, 
 stress scenarios can be regarded as a parallel shift in the spot rate 
ve. The following Proposition 2 considers the results when there is a 
allel shift in the spot rate curve.

position 2. Let 𝑓∞ be a solution to the first-order condition (13). Then, 
any constant 𝑐, 𝑓∞+𝑐 is a solution to the following equation with respect 
̃∞:

𝑇∑
𝑗=1

(𝑢𝑖𝜋̃𝑖𝑒𝑓∞𝑢𝑖 )[𝐖−1
𝛼
]𝑖𝑗 (𝜋̃𝑗𝑒𝑓∞𝑢𝑗 − 1) = 0,

re 𝜋̃𝑖 = 𝜋𝑖𝑒
−𝑐𝑢𝑖 , 𝑖 = 1, 2, … , 𝑇 .

Let us illustrate Proposition 2. For 𝑖 = 1, 2, … , 𝑇 , the discount fac-

for term 𝑢𝑖 with spot rate 𝑟𝑖 is 𝜋𝑖 = 𝑒−𝑟𝑖𝑢𝑖 . If the spot rate curve 
eriences a parallel shift of magnitude 𝑐, the corresponding discount 
or will change into 𝜋̃𝑖 = 𝑒−(𝑟𝑖+𝑐)𝑢𝑖 = 𝜋𝑖𝑒

−𝑐𝑢𝑖 . Hence, Proposition 2 im-

s that the endogenous and positive UFR generated by Method 1 will 
t accordingly with the parallel shift in the spot rates. Therefore, our 
hod is consistent with the stress scenarios specified in Solvency II 
gerås and Lindholm, 2016).

Endogenous and positive UFRs with prior knowledge

Method 1 can be used to solve for an endogenous and positive UFR. 
ever, although an endogenous UFR can reflect the market environ-

t, the optimal solution may not comply with common sense during 
e periods. Daily variations in fixed income instrument prices can 
e the optimal UFR sensitive to market fluctuations and noise. Since 

ulators and practitioners may have certain prior knowledge about 
 UFR, this knowledge can be incorporated into our model. In this sec-

, we propose Method 2 to generate endogenous and positive UFRs 
h prior knowledge, and demonstrate its feasibility.

In order to incorporate prior knowledge about the UFR into the 
ework, we consider a new optimization problem14:

min
𝑓∞

min
𝑔∈(𝑓∞)

⎡⎢⎢⎣
∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠+ 𝜆

2
𝛼3(𝑓∞ − 𝑓prior )2

⎤⎥⎥⎦ , (24)

re (𝑓∞) is as defined in (11), 𝑓prior > 0 represents the prior knowl-

e about the UFR (for example, the EIOPA sets the UFR for China to 
.50% (EIOPA, 2019, Paragraph 351), so we can set 𝑓prior = 4.50%), 
 𝜆 > 0 is a tuning parameter. Optimization problem (24) is in-

ed by the ridge regression, which is a widely-used tool in regres-

 analysis (Hastie et al., 2009). By adding the regularization term 
3(𝑓∞−𝑓prior )2, the optimal solution 𝑓∞ to (24) will be closer to 𝑓prior

The regularization term 𝜆
2
𝛼3(𝑓∞ − 𝑓prior )2 includes the factor 𝛼3 to simplify 
the first-order condition (25).
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Fig. 5. The graphs of the function ℎ̃ (𝑓∞) with 𝛼 = 0.400 and different values of 𝜆.
𝛼,𝜆

than the solution to de Kort-Vellekoop’s optimization problem (10). The 
tuning parameter 𝜆 represents our confidence in the prior knowledge 
𝑓prior , and the larger the parameter 𝜆, the closer 𝑓∞ and 𝑓prior will be. 
In particular, when 𝜆 = 0, problem (24) reduces to de Kort-Vellekoop’s 
optimization problem (10).

The following Theorem 3 gives the first-order condition for the op-

timization problem (24).

Theorem 3. The optimal solution 𝑓∞ to optimization problem (24) should 
satisfy the following first-order condition

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
+ 𝜆(𝑓∞ − 𝑓prior ) = 0. (25)

Similar to Theorem 1, the following Theorem 4 states that the solu-

tion to the first-order condition (25) also exists.

Theorem 4. Given 𝜆 > 0, the first-order equation (25) with respect to 𝑓∞
has at least one solution.

Remark 8. In comparison, Theorem 4 establishes the existence of a so-

lution to the first-order condition (25) without requiring the regularity 
condition (18) stated in Theorem 1.

Fig. 5 illustrates the relationship between the roots of ℎ̃𝛼,𝜆(𝑓∞) and 
𝜆. The four curves in Fig. 5 are the graphs of ℎ̃𝛼,𝜆(𝑓∞) for different 
values of 𝜆. As we increase the tuning parameter 𝜆, the values of 𝑓∞
(orange circles) will approach the 𝑓prior (red star). In practice, we can 
choose 𝜆 according to our confidence in the prior knowledge 𝑓prior .

By applying Theorem 3, we propose the following Method 2, which 
can generate endogenous and positive UFRs and incorporate practition-

ers’ prior knowledge. In addition to the input parameters of Method 1, 
we also need to predetermine 𝑓prior and 𝜆.

Method 2. (Endogenous and positive UFRs with prior knowledge)

Step 1: Derive the feasible region of 𝛼:

̃ ∶=

{
𝛼 ∶ 𝛼 > 0,

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖

) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗 − 1

)
− 𝜆𝑓prior < 0

}
,

(26){ }
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̃ ∶= 𝛼 ∶ 𝛼 ∈ ̃, 𝛼 ≥ 𝛼min, |𝑓𝛼(CP) − 𝑓𝛼
∞| ≤ 𝜏 , (27)
where 𝑓𝛼
∞ is the solution to the new first-order condition (25) given 

𝛼, and 𝑓𝛼(⋅) is the forward curve generated by the Smith-Wilson 
method (3) given 𝛼 and 𝑓∞ = 𝑓𝛼

∞.

Step 2: Choose an optimal 𝛼:

𝛼̃∗ = inf ̃.
Step 3: Solve the following equation for 𝑓∞:

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖−1

𝛼̃∗
]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
+ 𝜆(𝑓∞ − 𝑓prior ) = 0.

Remark 9. Method 2 reduces to Method 1 when 𝜆 = 0.

Finally, in the following Theorem 5, we show that both ̃ and ̃ as 
defined in (26) and (27) are not empty, which implies the feasibility of 
Method 2.

Theorem 5. Given 𝜆 > 0, the regions ̃ and ̃ as defined in (26) and (27)

are not empty.

Theorem 5 shows the feasibility of Method 2. Unlike Theorem 2, 
which imposes certain conditions for the feasibility of Method 1, Theo-

rem 5 shows that Method 2 is always feasible for any input data.

5. Empirical study

In this section, we illustrate the empirical performance of Method 1

and Method 2 for constructing risk-free interest rate curves of Chinese 
government bonds. For comparison, we also present the results of the 
Smith-Wilson method used by the EIOPA and the de Kort-Vellekoop 
method proposed in de Kort and Vellekoop (2016) (see optimization 
problem (10)). We demonstrate that our methods are highly effective 
and practical for constructing smooth curves with endogenous and pos-

itive UFRs. We also obtain several useful empirical facts about the 
risk-free interest rate in the Chinese market. Furthermore, we provide 
an empirical study in Appendix C to demonstrate the performance of 
our methods in low (and even negative) interest rate environments us-

ing the EURIBOR swap data.

5.1. Data and preprocessing

Our empirical study is based on quarterly data of Chinese gov-
ernment bonds traded on the China Foreign Exchange Trade System 
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Fig. 6. A small fragment of the raw cash flow matrix, 2020 Quarter 3.

Table 1

The 𝑢𝑖, 𝑚𝑖, and cash flow matrix 𝐂, 2020 Quarter 3.

𝑖 1 2 3 4 5 6 7 8 9

𝑢𝑖 1.51 2.51 3.60 4.50 5.48 6.49 7.48 8.39 9.57

𝑚𝑖 1,783.65 1,291.85 904.13 897.94 687.83 688.48 408.12 298.66 381.23

9 × 9 cash flow matrix 𝐂

𝑐𝑖𝑗 1 2 3 4 5 6 7 8 9

1 1,855.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 42.26 1,339.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 33.18 33.18 930.97 0.00 0.00 0.00 0.00 0.00 0.00

4 29.50 29.50 29.50 927.62 0.00 0.00 0.00 0.00 0.00

5 21.65 21.65 21.65 21.65 718.73 0.00 0.00 0.00 0.00

6 21.89 21.89 21.89 21.89 21.89 718.84 0.00 0.00 0.00

7 14.90 14.90 14.90 14.90 14.90 14.90 411.07 0.00 0.00

8 10.40 10.40 10.40 10.40 10.40 10.40 10.40 306.85 0.00

9 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 409.88
(CFETS),15 over the time period from 2016 Quarter 1 to 2021 Quarter 
1 (21 quarters in total).16 Our data comes from the Wind database.17

Before constructing the curves, we perform three data preprocessing 
steps: selecting bonds, generating a cash flow matrix, and compressing 
the cash flow matrix.

First, we select bonds. For each quarter, bonds with maturity less 
than 1 year or greater than 10 years are excluded,18 and bonds with no 
trading volume are also excluded. In addition, we exclude bonds with a 
relative difference greater than 1% between the average closing price of 
the last five trading days (excluding the last day) and the closing price 
of the last trading day.

Second, we generate a raw cash flow matrix for the selected bonds. 
More precisely, for each bond, we record the future payments and the 
corresponding times of payments occur. These are recorded according 
to the basic information (face value, coupon rate, maturity, frequency 
of coupon payments, etc.) of the bonds. Fig. 6 shows a small fragment 
of the raw cash flow matrix for 2020 Quarter 3. The green cells in the 
first row represent payment times, and the blue cells in the first column 
represent the market prices of each selected bond. From the second to 
the last column, each row corresponds to the cash flow of a bond.

15 See http://www .chinamoney .com .cn /english /mdtdp/.
16 We select this period because the China Risk-Oriented Solvency System was 
officially implemented in 2016, see, for example, Fung et al. (2018).
17 See https://www .wind .com .cn /en /Default .html.
18 This is because the EIOPA recommends excluding financial instruments with 
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maturities less than 1 year when constructing risk-free rate term structures 
Third, we compress the raw matrix into a 9 × 9 matrix 𝐂. That is 
to say, we generate 𝑁 = 9 “representative” bonds with 𝑇 = 9 different 
payment times. We first divide the payment times into 𝑇 = 9 intervals: 
[1, 2], (2, 3], (3, 4], … , (9, 10] (years). Next, for each interval (𝑖, 𝑖 + 1], we 
calculate the cash-flow-weighted average payment time 𝑢𝑖, which is the 
sum of the payment times weighted by their respective cash flows di-

vided by the total cash flow in the interval. For each bond, all cash 
flows that occur during (𝑖, 𝑖 + 1] are regarded as occurring at 𝑢𝑖. Then, 
we classify the selected bonds into 𝑁 = 9 groups according to their 
maturities: maturity ∈ [1, 2], (2, 3], (3, 4], … , (9, 10]. Finally, we merge 
the cash flows in each group together to construct 𝑁 = 9 representa-

tive bonds with payments occurring at 𝑢1, 𝑢2, … , 𝑢9, respectively. Now, 
both the cash flow matrix 𝐂 and the prices of the 9 representative bonds 
𝑚1, 𝑚2, … , 𝑚9 are generated. Table 1 shows an example of 𝑢𝑖, 𝑚𝑖, and 
the cash flow matrix 𝐂 generated using the data of 2020 Quarter 3.

5.2. Empirical results

In this section, we present empirical results and demonstrate the 
capabilities of our methods for modelling the Chinese risk-free inter-

est rate. Section 5.2.1 compares the performance of curves generated 
by different methods for several specific quarters. This comparison 
highlights the advantages of our methods over existing techniques. Sec-

tion 5.2.2 compares the UFRs obtained using different methods from a 

(EIOPA, 2019, Paragraph 15). In addition, the last liquid point is set to be 10 

years for China (EIOPA, 2019, Table 8).

http://www.chinamoney.com.cn/english/mdtdp/
https://www.wind.com.cn/en/Default.html
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Fig. 7. Risk-free interest rate curves generated by different methods, 2020 Quarter 3.
time series perspective, and reveals several useful facts about the be-

haviour of the Chinese risk-free interest rate over time.

5.2.1. Comparison of different methods

We compare different methods by studying two typical quarters: 
2020 Quarter 3 and 2020 Quarter 4. These quarters were chosen be-

cause they represent periods of significant volatility in the Chinese risk-

free interest rate, making them ideal for evaluating the performance of 
our methods and comparing them to existing techniques.

Fig. 7 and Fig. 8 present the spot and forward curves for 2020 Quar-

ter 3 and 2020 Quarter 4, respectively. Each figure shows the results of 
four methods: Method 1 (the blue solid lines), Method 2 (the red dashed 
lines, with 𝑓prior = 4.50% and 𝜆 = 1, 000), the de Kort-Vellekoop method 
(the orange dash-dotted lines), and the original Smith-Wilson method 
adopted by the EIOPA (the green dotted lines, with an exogenous UFR 
of 4.50%). The convergence point for all methods is set to be 60 years 
(EIOPA, 2019, Paragraph 120). From the figures, the comparison of the 
four methods in 2020 Quarter 3 shows greater differences than in 2020 
Quarter 4.

We first analyse the behaviour of the original Smith-Wilson method 
(the green dotted lines). The UFR is set to be 4.50% exogenously, and 
𝛼 is chosen using (9) (EIOPA, 2019, Paragraphs 121 and 158). One can 
observe that, for the original Smith-Wilson method, both the spot curves 
and the forward curves in Fig. 7 and Fig. 8 converge to the exogenous 
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UFR (4.50%) as the term increases without bound, regardless of how 
the market data of bonds behaves. In addition, it seems that the (green 
dotted) forward curve is not smooth enough in the neighbourhood of 
the last liquid point (10 years).

Next, we analyse the behaviour of the de Kort-Vellekoop method 
(the orange dash-dotted lines). As de Kort and Vellekoop (2016) did not 
consider the choice of 𝛼, we apply the same procedure as the original 
Smith-Wilson method to determine 𝛼 using (9). In Fig. 7, both the spot 
curves and the forward curves become negative as the term increases 
without bound (the endogenous UFR is −2.05%, and 𝛼 = 0.130), while 
in Fig. 8, they do not (the endogenous UFR is 1.30%, and 𝛼 = 0.101). 
That is to say, although the de Kort-Vellekoop method can obtain en-

dogenous UFRs, the endogenous UFRs may not always be positive. In 
fact, for 2020 Quarter 3, 𝛼 = 0.130 ∉ ; while for 2020 Quarter 4, 
𝛼 = 0.101 lies in the set  of permissible values of 𝛼 as defined in 
(20).

Then, we turn to study the results of Method 1 (the blue solid 
lines). Both the spot and forward curves generated by Method 1 in 
Fig. 7 and Fig. 8 converge to endogenous and positive UFRs (0.02%
for 2020 Quarter 3 and 1.30% for 2020 Quarter 4). This confirms that 
Method 1 successfully realizes the goal of generating a UFR that is both 
endogenous and positive. It is worth noting that, in Fig. 8, the results 
of Method 1 (the blue solid lines) are the same as the results of the de 
Kort-Vellekoop method (the orange dash-dotted lines). This is because 

Method 1 is built upon the de Kort-Vellekoop method, and for 2020 
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Fig. 8. Risk-free interest rate curves generated by different methods, 2020 Quarter 4.
Quarter 4, the value of 𝛼 used by both methods, 0.101, falls within the 
feasible region . As a result, the de Kort-Vellekoop method has al-

ready found an endogenous and positive UFR, and the results of both 
methods should therefore be the same.

Finally, we analyse the results of Method 2 (the red dashed lines). 
The UFR generated by this method can be seen as a mixture of the 
completely endogenous UFR and the prior knowledge (𝑓prior = 4.50%) 
about the UFR. Therefore, the curves generated by Method 2 always 
stay in the middle of other curves. As explained in Section 4, a com-

pletely endogenous UFR may not always be desirable, and Method 2 is 
proposed to generate endogenous and positive UFRs while incorporat-

ing prior knowledge. In addition, the spot curves of Method 2 in both 
figures appear to be quite smooth.

Therefore, the results of both 2020 Quarter 3 and Quarter 4 show 
the strengths of our two proposed methods. Method 1 addresses the 
challenge of obtaining endogenous and positive UFRs, and Method 2

can further incorporate practitioners’ prior knowledge.

5.2.2. Time series of the UFRs

Now we compare different methods from the perspective of the time 
series of the UFRs. We study the data from 2016 Quarter 1 to 2021 
Quarter 1, and the time series of the UFRs obtained by four methods 
are shown in Fig. 9. For the convenience of comparison, the yield rates 
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of 10-year Chinese government bonds are also shown in the figure.
According to Fig. 9, we have the following viewpoints.

First, Method 1 can guarantee the positivity of the endogenous UFR. 
We can observe that the endogenous UFRs obtained by the de Kort-

Vellekoop method are negative in 2016 Quarter 4, 2017 Quarter 1, 
and 2020 Quarters 1–3, whereas the endogenous UFRs generated by 
Method 1 (the blue solid line) are always non-negative. This implies 
that, during normal time periods, the de Kort-Vellekoop method can 
yield positive UFRs, and Method 1 yields the same results as the de 
Kort-Vellekoop method (see Remark 4); during idiosyncratic time pe-

riods such as 2020, Method 1 can further ensure the positivity of the 
UFR. In particular, the UFR generated by Method 1 is close to the posi-

tive part of the UFR generated by the de Kort-Vellekoop method.19

Second, the UFRs generated by Method 2 (the grey dashed lines) ex-

hibit more stability over time than other methods (with the exception of 
the original Smith-Wilson method, which uses a fixed exogenous UFR, 
shown as the green dotted line). These UFRs are situated between com-

pletely endogenous UFRs and completely exogenous UFRs, and can be 
viewed as a mixture of the endogenous UFRs and prior knowledge.

19 The UFR generated using Method 1 does not always precisely equal the 
positive part of the result obtained from the de Kort-Vellekoop method. For 
example, Fig. 7 illustrates that while the de Kort-Vellekoop method generates 
a negative UFR in 2020 Quarter 3, Method 1 produces a UFR of 0.02%, not 

0.00%.
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Fig. 9. The time series of UFRs obtained by different methods.
Third, the values of UFRs generated by Method 2 approach 𝑓prior =
4.50% as 𝜆 increases. This is consistent with the fact that 𝜆 represents 
practitioners’ confidence in the prior knowledge 𝑓prior . The figure also 
shows the sensitivity of the UFR generated by Method 2 with respect to 
𝜆. For example, as 𝜆 varies from 200 to 2,000, the UFR change (in abso-

lute value) spans from 0.56% (2019 Quarter 4) to 2.90% (2020 Quarter 
1) in our dataset, with an average change of 1.67%. This implies that, 
on average, for our dataset, a unit change in 𝜆 results in a UFR change 
of 1.67%∕(2, 000 − 200) = 0.000926%.

Finally, the results provide insights into the dynamics of the UFRs 
of Chinese risk-free interest rates. The figure depicts low UFRs in 2016 
and 2020, which is consistent with the environment of the Chinese risk-

free interest rate market during these years (as indicated by the 10-year 
yield rates of the Chinese government bonds, shown as the pink line). 
Therefore, our proposed methods are able to incorporate some informa-

tion about the current risk-free interest rates into the choice of UFRs. 
In contrast, the original Smith-Wilson method adopted by the EIOPA 
relies on a (nearly) constant exogenous UFR, which cannot reflect the 
information of the market timely.

To summarize, these results demonstrate that our methods can both 
construct a smooth risk-free interest rate curve with endogenous and 
positive UFRs and incorporate insights about the market.

6. Conclusions

In this paper, we propose several methods for generating UFRs that 
are both endogenous and positive, and study their theoretical proper-

ties. Our methods are built upon the framework proposed by de Kort 
and Vellekoop (2016), which can generate endogenous UFRs. Under the 
assumption that the cash flow matrix is square and invertible, we show 
the existence of a solution to their first-order condition, and also demon-

strate the potential issue of negative UFRs obtained by their framework 
during extreme time periods such as the COVID-19 pandemic. To ad-

dress this issue, we introduce Method 1, which generates endogenous 
and positive UFRs, and give conditions for its feasibility. Moreover, we 
propose Method 2, a new framework for generating endogenous and 
positive UFRs with prior knowledge, and demonstrate that it is always 
feasible. Our methods are also consistent with the stress scenarios spec-

ified in Solvency II.
To further illustrate the capabilities of our proposed methods, we 

perform an empirical analysis using Chinese government bonds traded 
on the China Foreign Exchange Trade System, covering the time pe-

riod from 2016 Quarter 1 to 2021 Quarter 1. The results show that our 
methods can effectively construct smooth risk-free interest rate curves 
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with endogenous and positive UFRs. The endogenous UFRs generated 
by our methods are more stable than those obtained by other methods, 
and can also provide useful insights into the dynamics of the Chinese 
risk-free interest rate.

There are several topics related to the Smith-Wilson method that 
could be further explored. First, the matrix 𝐖𝛼 (and its inverse) plays 
a crucial role in the methods proposed in this paper. While we prove 
the existence of a solution to de Kort and Vellekoop’s (2016) first-order 
condition under the regularity condition (18), it would be valuable to 
investigate when this condition is satisfied. Second, under the Smith-

Wilson framework, the optimal interest rate curves are generated by 
the exponential tension spline function (8). By further studying the 
properties of this function, we can gain a deeper understanding of the 
relationship between the endogenous UFR obtained by (13) and the ob-

served market data. Third, in Appendix B, we describe the challenge 
faced by our framework when the cash flow matrix is not square and 
invertible, which requires further investigation. Fourth, the results gen-

erated by Method 2 depend on the choice of the tuning parameter 𝜆, and 
how to calibrate this parameter in practice can be further discussed.

Overall, our research presents new methods for generating endoge-

nous and positive UFRs. It provides a new framework for constructing 
risk-free interest rate curves, which can motivate further research on 
the UFR, the Smith-Wilson method, and curve construction methods in 
general.
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Appendix A. Lemmas and proofs

This appendix gives lemmas and proofs of the theoretical results in 
the main article.

A.1. Lemmas

We first provide the proofs of Lemmas 1 and 2 in the main article. 
We then propose two additional lemmas, Lemmas A.1 and A.2, and give 
their proofs.

Proof of Lemma 1. de Kort and Vellekoop (2016, Section 3) showed 

that 𝐖𝛼 is the covariance matrix of a non-degenerate Gaussian vector. 
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Therefore, both 𝐖𝛼 and its inverse 𝐖−1
𝛼

are positive definite. Hence, 
[𝐖−1

𝛼
]𝑖𝑖 is positive for all 𝑖 = 1, 2, … , 𝑇 . Since [𝐖𝛼]𝑖𝑖 =𝑊𝛼(𝑢𝑖, 𝑢𝑖) = 𝛼𝑢𝑖−

1
2 +

1
2 𝑒

−2𝛼𝑢𝑖 < 𝛼𝑢𝑖, we only need to prove [𝐖−1
𝛼
]𝑖𝑖 ⋅ [𝐖𝛼]𝑖𝑖 > 1.

Let the eigenvalue decomposition of 𝐖𝛼 be 𝐖𝛼 = 𝐐𝚲𝐐⊤, where 
𝐐 is orthogonal and 𝚲 = diag{𝜆1, … , 𝜆𝑇 } with 𝜆𝑖 > 0, 𝑖 = 1, 2, … , 𝑇 . 
Therefore, 𝐖−1

𝛼
= 𝐐𝚲−1𝐐⊤. The 𝑖-th diagonal entries of 𝐖𝛼 and 𝐖−1

𝛼

are [𝐖𝛼]𝑖𝑖 =
∑𝑇

𝑗=1 𝜆𝑗𝐐
2
𝑗𝑖

and [𝐖−1
𝛼
]𝑖𝑖 =

∑𝑇

𝑗=1
1
𝜆𝑗
𝐐2

𝑗𝑖
, respectively. The 

Cauchy-Schwarz inequality implies that

[𝐖−1
𝛼
]𝑖𝑖 ⋅ [𝐖𝛼]𝑖𝑖 =

[
𝑇∑
𝑗=1

(√
𝜆𝑗𝐐2

𝑗𝑖

)2
]⎡⎢⎢⎣

𝑇∑
𝑗=1

(√
1
𝜆𝑗

𝐐2
𝑗𝑖

)2⎤⎥⎥⎦
≥
[

𝑇∑
𝑗=1

(√
𝜆𝑗𝐐2

𝑗𝑖

)(√
1
𝜆𝑗

𝐐2
𝑗𝑖

)]2
=

[
𝑇∑
𝑗=1

𝐐2
𝑗𝑖

]2
= 1.

Note that the equality holds if and only if 
√

𝜆𝑗𝐐2
𝑗𝑖
= 𝑐

√
1
𝜆𝑗
𝐐2

𝑗𝑖
for some 

constant 𝑐, which implies that

[𝐖𝛼]𝑖𝑗 =
𝑇∑

𝑘=1
𝜆𝑘𝐐𝑘𝑖𝐐𝑘𝑗 =

𝑇∑
𝑘=1

𝑐𝐐𝑘𝑖𝐐𝑘𝑗 = 𝑐

𝑇∑
𝑘=1

𝐐𝑘𝑖𝐐𝑘𝑗 = 0

for all 𝑖 ≠ 𝑗. But this is contradicting with the definition of 𝐖𝛼 . There-

fore, [𝐖−1
𝛼
]𝑖𝑖 > 1∕[𝐖𝛼]𝑖𝑖 > 1∕(𝛼𝑢𝑖). □

Proof of Lemma 2. Proof of (a): Note that

ℎ𝛼(𝑓∞)
𝑒𝑓∞𝑢1

=
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝜋𝑗 [𝐖−1

𝛼
]𝑖𝑗
)
𝑒𝑓∞(𝑢𝑖+𝑢𝑗−𝑢1)

−
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖[𝐖−1

𝛼
]𝑖𝑗
)
𝑒𝑓∞(𝑢𝑖−𝑢1).

Since 𝑢𝑖+𝑢𝑗−𝑢1 > 0 for 𝑖, 𝑗 = 1, 2, … , 𝑇 and 𝑢𝑖−𝑢1 > 0 for 𝑖 = 2, 3, … , 𝑇 , 
all terms in the equation above will converge to 0 as 𝑓∞ → −∞. Thus, 
the result holds.

Proof of (b): Note that

ℎ𝛼(𝑓∞)
𝑒2𝑓∞𝑢𝑇

=
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝜋𝑗 [𝐖−1

𝛼
]𝑖𝑗
)
𝑒𝑓∞(𝑢𝑖+𝑢𝑗−2𝑢𝑇 )

−
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖[𝐖−1

𝛼
]𝑖𝑗
)
𝑒𝑓∞(𝑢𝑖−2𝑢𝑇 ).

Since 𝑢𝑖 + 𝑢𝑗 − 2𝑢𝑇 < 0 if 𝑖 and 𝑗 are not both 𝑇 , and 𝑢𝑖 − 2𝑢𝑇 < 0 for 
𝑖 = 1, 2, … , 𝑇 , all terms in the equation above will converge to 0 as 
𝑓∞ → +∞. Thus, the result holds. □

Lemma A.1. The matrix 𝐖𝛼 satisfies

lim
𝛼→+∞

𝐖𝛼

𝛼
=

⎛⎜⎜⎜⎜⎜⎝

𝑢1 𝑢1 ⋯ 𝑢1 𝑢1
𝑢1 𝑢2 ⋯ 𝑢2 𝑢2
⋮ ⋮ ⋱ ⋮ ⋮
𝑢1 𝑢2 ⋯ 𝑢𝑇−1 𝑢𝑇−1
𝑢1 𝑢2 ⋯ 𝑢𝑇−1 𝑢𝑇

⎞⎟⎟⎟⎟⎟⎠
=∶ 𝐖̃∞, (A.1)

and the inverse of 𝐖̃∞ is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
w

P
1
2

𝛼

H

i

L

𝑓

∑
𝑖

P

s

t

o

s

A

P

t

(

T

P

P

e

0∑
fi

∑
𝑖

A

∑
𝑖

H
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𝐖̃−1
∞ =
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1

Δ𝑢1
+ 1

Δ𝑢2
− 1

Δ𝑢2
0 ⋯ 0 0 0

− 1
Δ𝑢2

1
Δ𝑢2

+ 1
Δ𝑢3

− 1
Δ𝑢3

⋯ 0 0 0
0 − 1

Δ𝑢3
1

Δ𝑢3
+ 1

Δ𝑢4
⋯ 0 0 0

0 0 − 1
Δ𝑢4

⋯ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 0 ⋯ − 1

Δ𝑢𝑇−1
1

Δ𝑢𝑇−1
+ 1

Δ𝑢𝑇
− 1

Δ𝑢𝑇
0 0 0 ⋯ 0 − 1

Δ𝑢𝑇
1

Δ𝑢𝑇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A.2)

here Δ𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1 for 𝑖 = 1, 2, … , 𝑇 .

roof of Lemma A.1. By definition, we have 𝑊𝛼(𝑡, 𝑢) = 𝛼min(𝑡, 𝑢) −
𝑒−𝛼|𝑡−𝑢| + 1

2
𝑒−𝛼(𝑡+𝑢), and therefore

lim
→+∞

𝑊𝛼(𝑡, 𝑢)
𝛼

=min(𝑡, 𝑢).

ence, (A.1) holds. Then, one can directly check that the inverse of 𝐖̃∞
s given by (A.2). □

emma A.2. As 𝛼 → +∞, the solution to the first-order condition (13), 
𝛼
∞, converges to the solution to the following equation with respect to 𝑓∞:

𝑇

=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖̃−1

∞
]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
= 0. (A.3)

roof of Lemma A.2. This lemma holds because multiplying both 
ides of the first-order condition (13) by 𝛼 does not change the solu-

ion to the equation. Equation (A.3) exists at least one solution because 
ne can directly check that the matrix 𝐖̃−1

∞ as defined in (A.2) always 
atisfies the regularity condition (18) proposed in Theorem 1. □

.2. Proofs

roof of Proposition 1. The first-order condition (13) can be rewrit-

en as

𝐔𝑋)⊤𝐖−1
𝛼
(𝑋 − 𝟏) = 0. (A.4)

hen, direct calculation shows that (A.4) is equivalent to (16). □

roof of Corollary 1. This is a direct corollary of Proposition 1. □

roof of Theorem 2. We first prove that  as defined in (20) is not 
mpty. In fact, if we can show 

∑𝑇

𝑖=1
∑𝑇

𝑗=1
(
𝑢𝑖𝜋𝑖

) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗 − 1

)
<

when 𝛼 → +∞, the result will be true due to the continuity of 
𝑇

𝑖=1
∑𝑇

𝑗=1
(
𝑢𝑖𝜋𝑖

) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗 − 1

)
with respect to 𝛼. Therefore, it suf-

ces to prove

𝑇

=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖

) [
𝐖̃−1

∞
]
𝑖𝑗

(
𝜋𝑗 − 1

)
< 0.

ccording to (A.2) in Lemma A.1, we have

𝑇

=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖

) [
𝐖̃−1

∞
]
𝑖𝑗

(
𝜋𝑗 − 1

)
=

𝑇−1∑
𝑖=1

(𝑢𝑖𝜋𝑖)
(
𝜋𝑖 − 𝜋𝑖−1
𝑢𝑖 − 𝑢𝑖−1

−
𝜋𝑖+1 − 𝜋𝑖

𝑢𝑖+1 − 𝑢𝑖

)
+ (𝑢𝑇 𝜋𝑇 )

𝜋𝑇 − 𝜋𝑇−1
𝑢𝑇 − 𝑢𝑇−1

=
𝑇∑
𝑖=1

(
𝑢𝑖𝜋𝑖 − 𝑢𝑖−1𝜋𝑖−1

) 𝜋𝑖 − 𝜋𝑖−1
𝑢𝑖 − 𝑢𝑖−1

.

ence, 
∑𝑇

𝑖=1
∑𝑇

𝑗=1
(
𝑢𝑖𝜋𝑖

) [
𝐖̃−1

∞
]
𝑖𝑗

(
𝜋𝑗 − 1

)
< 0 when (22) holds, which 
proves that  is not empty.
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Now we prove that, for sufficiently large values of 𝛼, we also have 
𝛼 ∈ . The gap between the forward curve and the UFR at the conver-

gence point, |𝑓𝛼(CP) −𝑓𝛼
∞|, takes the form of (EIOPA, 2019, Paragraph 

158)

|𝑓𝛼(CP) − 𝑓𝛼
∞| = 𝛼|1 − 𝜅𝛼𝑒

𝛼CP| ,
where

𝜅𝛼 =
1 +

𝑇∑
𝑖=1

𝑇∑
𝑗=1

𝛼𝑢𝑖
[
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓𝛼
∞ − 1

)
𝑇∑
𝑖=1

𝑇∑
𝑗=1

sinh(𝛼𝑢𝑖)
[
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓𝛼
∞ − 1

) .
Hence, we only need to prove

lim
𝛼→+∞

|𝑓𝛼(CP) − 𝑓𝛼
∞| = lim

𝛼→+∞
𝛼|1 − 𝜅𝛼𝑒

𝛼CP| = 0.

Since 𝛼|1 − 𝜅𝛼𝑒
𝛼CP| = 1|1∕𝛼 − 𝜅𝛼𝑒

𝛼CP∕𝛼| , we consider

𝜅𝛼𝑒
𝛼CP∕𝛼 =

1 +
𝑇∑
𝑖=1

𝑇∑
𝑗=1

𝛼𝑢𝑖
[
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓𝛼
∞ − 1

)
𝑇∑
𝑖=1

𝑇∑
𝑗=1

sinh(𝛼𝑢𝑖)
exp(𝛼CP)𝛼

[
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓𝛼
∞ − 1

) . (A.5)

For the denominator of (A.5), Lemma A.1 implies that lim
𝛼→+∞

𝛼
[
𝐖−1

𝛼

]
𝑖𝑗

exists, and Lemma A.2 establishes the convergence of 𝑓𝛼
∞. In addition, 

lim
𝛼→+∞

sinh(𝛼𝑢𝑖)
exp(𝛼CP) = 0 since CP > 𝑢𝑖 for all 𝑖 = 1, 2, … , 𝑇 . Therefore, the de-

nominator of (A.5) converges to 0 as 𝛼→ +∞.

Now we consider the numerator of (A.5). By using the result of 
Lemma A.1, we have

lim
𝛼→+∞

[
1 +

𝑇∑
𝑖=1

𝑇∑
𝑗=1

𝛼𝑢𝑖
[
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓𝛼
∞ − 1

)]

= 1 +
𝑇∑
𝑖=1

𝑇∑
𝑗=1

𝑢𝑖
[
𝐖̃−1

∞
]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞
∞ − 1

)
= 1 + 𝜋𝑇 𝑒

𝑓∞
∞ − 1

= 𝜋𝑇 𝑒
𝑓∞
∞ > 0,

where 𝑓∞
∞ is the root of (A.3). Hence, we have

lim
𝛼→+∞

𝜅𝛼𝑒
𝛼CP∕𝛼 = +∞,

which implies that

lim
𝛼→+∞

|𝑓𝛼(CP) − 𝑓𝛼
∞| = lim

𝛼→+∞
𝛼|1 − 𝜅𝛼𝑒

𝛼CP|
= lim

𝛼→+∞
1|1∕𝛼 − 𝜅𝛼𝑒

𝛼CP∕𝛼| = 0.

Therefore, for sufficiently large values of 𝛼, we have 𝛼 ∈ . This com-

pletes the proof. □

Proof of Proposition 2. One can check that the first-order condition 
(13) is equivalent to
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

−𝑐𝑢𝑖 𝑒(𝑓∞+𝑐)𝑢𝑖
)
[𝐖−1

𝛼
]𝑖𝑗
(
𝜋𝑗𝑒

−𝑐𝑢𝑗 𝑒(𝑓∞+𝑐)𝑢𝑗 − 1
)
= 0,

and hence the result holds. □

Proof of Theorem 3. This result can be regarded as a corollary of the 
proof given in the appendix of de Kort and Vellekoop (2016, Page 118). 
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𝛼(𝑓∞) = min
𝑔∈(𝑓∞)

∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠.

de Kort and Vellekoop (2016, Page 118) proved that, when the cash 
flow matrix 𝐂 is invertible, we have

𝜕𝛼(𝑓∞)
𝜕𝑓∞

= 𝛼3
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
.

As for our optimization problem (24), let

̃𝛼(𝑓∞) = min
𝑔∈(𝑓∞)

⎡⎢⎢⎣
∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠+ 𝜆

2
𝛼3(𝑓∞ − 𝑓prior )2

⎤⎥⎥⎦
= min

𝑔∈(𝑓∞)

⎡⎢⎢⎣
∞

∫
0

[
𝑔′′(𝑠)2 + 𝛼2𝑔′(𝑠)2

]
d𝑠
⎤⎥⎥⎦+ 𝜆

2
𝛼3(𝑓∞ − 𝑓prior )2,

then we immediately have

̃𝛼(𝑓∞) =𝛼(𝑓∞) + 𝜆

2
𝛼3(𝑓∞ − 𝑓prior )2.

Therefore, the first-order condition for problem (24) with respect to 𝑓∞
is

𝜕[̃𝛼(𝑓∞)]
𝜕𝑓∞

=
𝜕[𝛼(𝑓∞) + 𝜆𝛼3(𝑓∞ − 𝑓prior )2∕2]

𝜕𝑓∞

= 𝛼3
𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖𝑒

𝑓∞𝑢𝑖
) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗𝑒

𝑓∞𝑢𝑗 − 1
)
+ 𝜆𝛼3(𝑓∞ − 𝑓prior ) = 0,

which proves the result. □

Proof of Theorem 4. The left-hand side of the first-order equation 
(25) can be rewritten as

ℎ̃𝛼,𝜆(𝑓∞) = ℎ𝛼(𝑓∞) + 𝜆(𝑓∞ − 𝑓prior ),

where ℎ𝛼(𝑓∞) is given by (19). Remark 2 of Lemma 2 states that 
lim

𝑓∞→−∞
ℎ𝛼(𝑓∞) = 0 and lim

𝑓∞→+∞
ℎ𝛼(𝑓∞) = +∞. Therefore, we have

lim
𝑓∞→−∞

ℎ̃𝛼,𝜆(𝑓∞) = −∞, lim
𝑓∞→+∞

ℎ̃𝛼,𝜆(𝑓∞) = +∞.

Then the result holds because of the continuity of ℎ̃𝛼,𝜆(𝑓∞) with respect 
to 𝑓∞. □

Proof of Theorem 5. Lemma A.1 implies that, for any 𝑖, 𝑗 = 1, 2, … , 𝑇 , 
we have

lim
𝛼→+∞

[
𝐖−1

𝛼

]
𝑖𝑗
= 0. (A.6)

Therefore, ̃ is not empty because

lim
𝛼→+∞

𝑇∑
𝑖=1

𝑇∑
𝑗=1

(
𝑢𝑖𝜋𝑖
) [
𝐖−1

𝛼

]
𝑖𝑗

(
𝜋𝑗 − 1

)
− 𝜆𝑓prior = −𝜆𝑓prior < 0.

Now we prove 𝛼 ∈ ̃ for sufficiently large values of 𝛼. By using (A.6), 
one can easily find that the solution to the new first-order condition (25)

converges to 𝑓prior as 𝛼 → +∞. We can then use a similar approach to 
the proof of Theorem 2 to conclude that 𝛼 ∈ ̃ for sufficiently large 
values of 𝛼. This completes the proof. □

Appendix B. Rectangular and non-invertible cash flow matrices

When 𝐂 is not square and invertible, the theories presented in our 
main article do not apply. The fundamental issue lies in the fact that our 
methods and theories rely on the simplified first-order condition (13). 

When 𝐂 is not square or not invertible, we must resort to the more 
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Table B.1

The 𝑢𝑖, 𝑚𝑖, and the rectangular cash flow matrix 𝐂, 2020 Quarter 3.

𝑗 1 2 3 4 5 6 7 8 9 10

𝑢𝑗 0.50 1.51 2.51 3.60 4.50 5.48 6.49 7.48 8.39 9.57

𝑖 1 2 3 4 5 6 7 8 9

𝑚𝑖 1,840.73 1,334.11 937.31 927.44 709.48 710.37 423.02 309.06 392.67

9 × 10 cash flow matrix 𝐂

𝑐𝑖𝑗 1 2 3 4 5 6 7 8 9 10

1 57.08 1,855.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 42.26 42.26 1,339.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 33.18 33.18 33.18 930.97 0.00 0.00 0.00 0.00 0.00 0.00

4 29.50 29.50 29.50 29.50 927.62 0.00 0.00 0.00 0.00 0.00

5 21.65 21.65 21.65 21.65 21.65 718.73 0.00 0.00 0.00 0.00

6 21.89 21.89 21.89 21.89 21.89 21.89 718.84 0.00 0.00 0.00

7 14.90 14.90 14.90 14.90 14.90 14.90 14.90 411.07 0.00 0.00

8 10.40 10.40 10.40 10.40 10.40 10.40 10.40 10.40 306.85 0.00

9 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 409.88

Fig. B.1. Risk-free interest rate curves generated by different methods under a rectangular cash flow matrix, 2020 Quarter 3.
general version of the first-order condition (12). Therefore, to enable 
our theoretical results to hold for 𝐂 that is not square or not invertible, 
a more detailed analysis of (12) is required. This is beyond the scope of 
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this paper, and a detailed analysis is left for future work.
Despite the absence of a theoretical guarantee, we endeavor to ex-

tend both Method 1 and Method 2 using (12) as follows. The ideas 
behind these generalized methods align with those of Method 1 and 

Method 2 as presented in our main article.
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Fig. B.2. Risk-free interest rate curves generated by different methods under a rectangular cash flow matrix, 2020 Quarter 4.
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Fig. B.3. The time series of UFRs obtained by different methods with rectangular cash flow matrices.
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Fig. C.4. Risk-free interest rate curves generated by different methods based the EURIBOR swap data, September 2020.
Method B.1. (Endogenous and positive UFRs: Generalized)

Step 1: Derive the feasible region of 𝛼:

𝑔 ∶=
{
𝛼 ∶ 𝛼 > 0, (𝑚−𝐂𝟏)⊤(𝐂𝐖𝛼𝐂⊤)−1𝐂𝐔

×
(
𝟏+𝐖𝛼𝐂⊤(𝐂𝐖𝛼𝐂⊤)−1(𝑚−𝐂𝟏)

)
< 0
}
,

𝑔 ∶=
{
𝛼 ∶ 𝛼 ∈𝑔, 𝛼 ≥ 𝛼min, |𝑓𝛼(CP) − 𝑓𝛼

∞| ≤ 𝜏
}
,

where 𝑓𝛼
∞ is the solution to the first-order condition (12) given 

𝛼, and 𝑓𝛼(⋅) is the forward curve generated by the Smith-Wilson 
method (3) given 𝛼 and 𝑓∞ = 𝑓𝛼

∞.

Step 2: Choose an optimal 𝛼:

𝛼∗
𝑔
= inf 𝑔.

Step 3: Solve the following equation for 𝑓∞:

(𝑚−𝐂𝐃𝑓∞𝟏)⊤(𝐂𝐃𝑓∞𝐖𝛼∗𝑔
𝐃𝑓∞𝐂⊤)−1𝐂𝐃𝑓∞𝐔

×
(
𝟏+𝐖𝛼∗𝑔

𝐃𝑓∞𝐂⊤(𝐂𝐃𝑓∞𝐖𝛼∗𝑔
𝐃𝑓∞𝐂⊤)−1(𝑚−𝐂𝐃𝑓∞𝟏)

)
= 0.

Method B.2. (Endogenous and positive UFRs with prior knowledge: 

S

S

S
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Generalized)
tep 1: Derive the feasible region of 𝛼:

̃𝑔 ∶=
{
𝛼 ∶ 𝛼 > 0, (𝑚−𝐂𝟏)⊤(𝐂𝐖𝛼𝐂⊤)−1𝐂𝐔

×
(
𝟏+𝐖𝛼𝐂⊤(𝐂𝐖𝛼𝐂⊤)−1(𝑚−𝐂𝟏)

)
− 𝜆𝑓prior < 0

}
,

̃𝑔 ∶=
{
𝛼 ∶ 𝛼 ∈ ̃𝑔, 𝛼 ≥ 𝛼min, |𝑓𝛼(CP) − 𝑓𝛼

∞| ≤ 𝜏
}
,

where 𝑓𝛼
∞ is the solution to the following new first-order condition 

with respect to 𝑓∞ given 𝛼:

(𝑚−𝐂𝐃𝑓∞𝟏)⊤(𝐂𝐃𝑓∞𝐖𝛼𝐃𝑓∞𝐂⊤)−1𝐂𝐃𝑓∞𝐔

×
(
𝟏+𝐖𝛼𝐃𝑓∞𝐂⊤(𝐂𝐃𝑓∞𝐖𝛼𝐃𝑓∞𝐂⊤)−1(𝑚−𝐂𝐃𝑓∞𝟏)

)
+ 𝜆(𝑓∞ − 𝑓prior ) = 0,

and 𝑓𝛼(⋅) is the forward curve generated by the Smith-Wilson 
method (3) given 𝛼 and 𝑓∞ = 𝑓𝛼

∞.

tep 2: Choose an optimal 𝛼:

𝛼̃∗
𝑔
= inf ̃𝑔.

tep 3: Solve the following equation for 𝑓∞:

(𝑚−𝐂𝐃𝑓∞𝟏)⊤(𝐂𝐃𝑓∞𝐖𝛼̃∗𝑔
𝐃𝑓∞𝐂⊤)−1𝐂𝐃𝑓∞𝐔( )
× 𝟏+𝐖𝛼̃∗𝑔
𝐃𝑓∞𝐂⊤(𝐂𝐃𝑓∞𝐖𝛼̃∗𝑔

𝐃𝑓∞𝐂⊤)−1(𝑚−𝐂𝐃𝑓∞𝟏)
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Fig. C.5. Risk-free interest rate curves generated by different methods based on the EURIBOR swap data, December 2020.
+ 𝜆(𝑓∞ − 𝑓prior ) = 0.

The sets defined in Methods B.1 and B.2, 𝑔 , 𝑔 , ̃𝑔 , and ̃𝑔 are 
more complex, and we cannot guarantee their non-emptiness as we did 
for Methods 1 and 2 in our main article.

Let us use an example to illustrate that Methods B.1 and B.2 may still 
be applied in practice. We use the same data as in Section 5. The main 
difference is that, here we take the payments of the 𝑁 = 9 representa-

tive bonds that occur within the first year into consideration. Therefore, 
we have 𝑇 = 10 payment intervals: (0, 1], (1, 2], (2, 3], (3, 4], … , (9, 10]. 
We denote the cash-flow-weighted average payment times within each 
interval by 𝑢1, 𝑢2, … , 𝑢10, respectively. In this setup, the cash flow ma-

trix of the 9 representative bonds, denoted by 𝐂, is a 9 ×10 rectangular 
matrix. Table B.1 provides an example of 𝑢𝑖, 𝑚𝑖, and the rectangular 
cash flow matrix 𝐂 generated using the data of 2020 Quarter 3.

Similar to Section 5.2.1, we apply different methods to construct 
the risk-free interest rates based on the rectangular cash flow matri-

ces. Fig. B.1 and Fig. B.2 show the spot rate curves and forward rate 
curves for 2020 Quarters 3 and 4, respectively. Four methods are ap-

plied: Method B.1 (the blue solid lines), Method B.2 (the red dashed 
lines), the de Kort-Vellekoop method (the orange dash-dotted lines), 
and the original Smith-Wilson method adopted by the EIOPA (the green 
dotted lines). The parameter setups are the same as in Section 5.2.1. We 
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can find that the results are quite similar to those obtained with square 
cash flow matrices (see Figs. 7,8). The UFRs obtained by Method B.1

and Method B.2 for 2020 Quarter 3 (2020 Quarter 4) are 0.02% and 
2.08% (1.28% and 2.64%), respectively, which are very close to those 
obtained with square cash flow matrices: 0.02% and 2.09% (1.30% and 
2.58%), respectively.

Fig. B.3 shows the time series of UFRs obtained using the four meth-

ods from 2016 Quarter 1 to 2021 Quarter 1 when the cash flow matrices 
are rectangular. The yield rates of 10-year Chinese government bonds 
are also shown in the figure. The figure is similar to Fig. 9, which 
displays the time series of UFRs under square cash flow matrices. There-

fore, the generalized methods, Methods B.1 and B.2, can provide results 
similar to those obtained by Methods 1 and 2 for our data.

Appendix C. Empirical study for EURIBOR swap rates

In this appendix, we present the results of an empirical study of our 
methods using the EURIBOR swap rates. Unlike the Chinese government 
bond interest rates, it is well known that short-term interest rates in 
the Eurozone have gone negative in recent years. This motivates us to 
study the performance of our methods in low or negative interest rate 

environments.
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Fig. C.6. The time series of UFRs obtained by different methods based on the EURIBOR swap data.
We obtain the EURIBOR swap rates data from Refinitiv,20 which 
is the same as the data vendor used by the EIOPA (EIOPA, 2019, Para-

graph 60). The data includes monthly closing prices for EURIBOR swaps 
with various maturities from 2018 to 2021. According to the EIOPA 
(EIOPA, 2019, Paragraph 345), we use swaps with maturities of 1–10, 
12, 15, and 20 years (𝑇 = 13), resulting in 13 × 13 cash flow matrices 
𝐂 for the swaps. The cash flow matrices 𝐂 are generated based on the 
methodology proposed in EIOPA (2019, Table 9).

As two examples, Fig. C.4 and Fig. C.5 show the results obtained by 
Method 1 (the blue solid lines), Method 2 (the red dashed lines, with 
𝑓prior = 4.20%), the de Kort-Vellekoop method (the orange dash-dotted 
lines), and the original Smith-Wilson method adopted by the EIOPA 
(the green dotted lines, with an exogenous UFR of 4.20%), based on the 
EURIBOR swap data of September and December 2020, respectively. 
Other parameter setups are the same as in Section 5.2.1. It is worth not-

ing that almost all short-term swap rates are negative in both months, 
and the endogenous UFRs generated by the de Kort-Vellekoop method 
are 0.01% and −0.05% for September and December 2020, respectively.

We now examine the performance of our methods. Method 1 is 
successful in finding positive UFRs for both September 2020 (0.01%) 
and December 2020 (0.00%). Although Method 1 is practical in both 
months, the sufficient condition (22) for Theorem 2 may not hold. In 
September 2020, the left-hand side of (22) equals −0.0016, while in 
December 2020, it equals 0.0008. However, (22) holds for most of the 
months in our dataset.

Fig. C.4 and Fig. C.5 also imply that the curves generated by 
Method 2 generally fall between the curves obtained by Method 1 and 
those produced by the original Smith-Wilson method. In addition, the 
endogenous UFRs obtained by Method 2 are both 2.69% for September 
and December 2020.

Fig. C.6 shows the time series of UFRs obtained using different meth-

ods based on the EURIBOR swap data. Despite the low and even nega-

tive short-term swap rates during this period, Method 1 and Method 2

consistently generate positive UFRs. In addition, the curve for the time 
series of endogenous UFRs generated by Method 2 has a similar trend to 

20 See https://www .refinitiv .com /en.

that for the time series of 20-year swap rates (pink line). This suggests 
that Method 2 incorporates information from both the prior knowledge 
(𝑓prior = 4.20%) and the current market data.
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