
This article was downloaded by: [71.235.252.141] On: 05 May 2025, At: 09:52
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

On Consistency of Signature Using Lasso
Xin Guo; , Binnan Wang; , Ruixun Zhang; , Chaoyi Zhao

To cite this article:
Xin Guo; , Binnan Wang; , Ruixun Zhang; , Chaoyi Zhao (2025) On Consistency of Signature Using Lasso. Operations
Research

Published online in Articles in Advance 05 May 2025

. https://doi.org/10.1287/opre.2024.1133

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-
Terms-and-Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or
systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval,
unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support
of claims made of that product, publication, or service.

Copyright © 2025, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations
research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning
opportunities for individual professionals, and organizations of all types and sizes, to better understand and use
O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2024.1133
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


Crosscutting Areas

On Consistency of Signature Using Lasso
Xin Guo,a Binnan Wang,b Ruixun Zhang,b,c,d,e,* Chaoyi Zhaof,* 
a Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720; b School of 
Mathematical Sciences, Peking University, Beijing 100871, China; c Center for Statistical Science, Peking University, Beijing 100871, 
China; d Laboratory for Mathematical Economics and Quantitative Finance, Peking University, Beijing 100871, China; e National Engineering 
Laboratory for Big Data Analysis and Applications, Peking University, Beijing 100871, China; f Sloan School of Management and Laboratory 
for Financial Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 
*Corresponding authors 
Contact: xinguo@berkeley.edu (XG); wangbinnan@stu.pku.edu.cn (BW); zhangruixun@pku.edu.cn, https://orcid.org/0000-0002-7670-8393
(RZ); cy_zhao@mit.edu, https://orcid.org/0000-0002-5921-3612 (CZ) 

Received: June 23, 2024 
Revised: November 27, 2024; 
February 26, 2025 
Accepted: March 13, 2025 
Published Online in Articles in Advance: 
May 5, 2025 

Area of Review: Machine Learning and Data 
Science 

https://doi.org/10.1287/opre.2024.1133 

Copyright: © 2025 INFORMS

Abstract. Signatures are iterated path integrals of continuous and discrete-time processes, 
and their universal nonlinearity linearizes the problem of feature selection in time series 
data analysis. This paper studies the consistency of signature using Lasso regression, both 
theoretically and numerically. We establish conditions under which the Lasso regression is 
consistent both asymptotically and in finite sample. Furthermore, we show that the Lasso 
regression is more consistent with the Itô signature for time series and processes that are 
closer to the Brownian motion and with weaker interdimensional correlations, whereas it 
is more consistent with the Stratonovich signature for mean-reverting time series and pro-
cesses. We demonstrate that signature can be applied to learn nonlinear functions and 
option prices with high accuracy, and the performance depends on properties of the under-
lying process and the choice of the signature.
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1. Introduction
1.1. Background and Problem Statement
Originally introduced and studied in algebraic topology 
(Chen 1954, 1957), the signature transform, sometimes 
referred to as the path signature or signature, has been 
adopted and further developed in rough path theory 
(Lyons et al. 2007, Friz and Victoir 2010). The signature 
produced from a continuous or discrete time series is a 
vector of real-valued features that extracts rich and rele-
vant information (Morrill et al. 2020a, Lyons and 
McLeod 2022).

Signature has proven to be an attractive and powerful 
tool for feature generation and pattern recognition with 
state-of-the-art performance in a wide range of domains 
in operations research, such as medical prediction (Kor-
militzin et al. 2017; Moore et al. 2019; Morrill et al. 2019, 
2020b, 2021; Bleistein et al. 2023; Pan et al. 2023), trans-
portation (Gu et al. 2024), and finance (Lyons et al. 2014, 
2019, Kalsi et al. 2020, Salvi et al. 2021, Akyildirim et al. 
2022, Cuchiero et al. 2023, Futter et al. 2023, Lemahieu 
et al. 2023).1 Comprehensive reviews of successful and 
potential applications of signatures in machine learning 

can be found in Chevyrev and Kormilitzin (2016), Lyons 
and McLeod (2022), and Moreno-Pino et al. (2024).

Most of the empirical success and theoretical studies 
of the signature are built on its striking universal nonli-
nearity property: Any continuous (linear or nonlinear) 
function of the time series can be approximated arbi-
trarily well by a linear combination of its signature (see 
Section 2.2). This property linearizes the problem of fea-
ture selection, and empirical studies demonstrate that 
the universal nonlinearity property gives the signature 
several advantages over neural network–based non-
linear methods (Levin et al. 2016, Lyons and McLeod 
2022, Bleistein et al. 2023, Pan et al. 2023, Gu et al. 2024). 
First, training linear models of signature do not require 
the engineering of neural network architectures; second, 
the linear model allows for interpretability (we show an 
example in Section 5.2).

Despite the rapidly growing literature on the probabi-
listic characteristics of signature and its successful appli-
cation in machine learning, studies on the statistical 
properties of the signature method are limited with a 
few exceptions such as Király and Oberhauser (2019) 
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and Morrill et al. (2020a).2 In particular, universal nonli-
nearity can be expressed under different definitions of 
signature, raising the question of which definition has 
better statistical properties for different processes and 
time series. To our knowledge, most empirical studies 
in the literature simply use a default definition regard-
less of the specific context and characteristics of the 
data. However, using an inappropriate signature defini-
tion may lead to suboptimal performance, as we dem-
onstrate in this paper.

Given the universal nonlinearity that legitimizes the 
regression analysis with signature, and given the popu-
larity of Lasso regression (Tibshirani 1996) to learn a 
sparse model of signature,3 the main focus of this paper 
is to understand the statistical properties of different 
forms of signature in Lasso regression given different 
time series data. In particular, we study the statistical 
consistency in feature selection, a fundamental property 
for Lasso regression to achieve both explainability and 
good out-of-sample model performance (Zhao and Yu 
2006, Bickel et al. 2009, Wainwright 2009).

1.2. Main Results and Contribution
This paper studies the consistency of Lasso regression 
with signature both theoretically and numerically. We 
compare the two most widely used definitions of signa-
ture: Itô and Stratonovich. We focus on two representa-
tive classes of Gaussian processes: multidimensional 
Brownian motion and Ornstein–Uhlenbeck (OU) pro-
cess and their respective discrete-time counterparts, that 
is, random walk and autoregressive (AR) process. These 
data-generating processes are simple enough to allow 
for analytical results while being fundamental in a num-
ber of domains ranging from machine learning (Song 
and Ermon 2019, Ho et al. 2020) and operations manage-
ment (Asmussen 2003, Zhang et al. 2018) to finance 
(Black and Scholes 1973, Merton 1973) and biology 
(Martins 1994, Hunt 2007).

Our contributions are multifold. First, we establish a 
probabilistic uniqueness of the universal nonlinearity 
given an order of truncated signature (Theorem 2), 
which suggests that any feature selection procedure 
needs to recover this unique linear combination of sig-
nature to achieve good predictive performance.

Second, to analyze the consistency of Lasso regression 
with signature, we explicitly derive the correlation 
structure of signature for the aforementioned processes. 
For Brownian motion, the correlation structure is shown 
to be block diagonal for the Itô signature (Theorem 3) 
and to have a special odd–even alternating structure for 
the Stratonovich signature (Theorem 4). In contrast, the 
OU process exhibits this odd–even alternating structure 
for either choice of the signature (Theorem 4).

Third, we establish conditions under which the Lasso 
regression with signature is provably consistent both 
asymptotically and in finite sample (Theorems 5–8), 

based on the classical notions of sign consistency and l∞
consistency (Zhao and Yu 2006, Wainwright 2009).

Furthermore, numerical experiments show that the 
Lasso regression with the Itô signature is more consistent 
for time series and processes that are closer to Brownian 
motion and with weaker interdimensional correlations, 
whereas it is more consistent with the Stratonovich signa-
ture for processes with stronger mean reversion. In gen-
eral, higher consistency rates yield better predictive 
performance.

Finally, we demonstrate that the signature can be 
applied to learn nonlinear functions and option prices 
with high accuracy. We compare stock options with 
interest rate options to highlight that performance 
depends on the properties of the underlying process. 
This method is interpretable because the signature 
allows for learning a set of Arrow–Debreu state prices 
that are used for transfer-learning the prices of any gen-
eral financial derivatives. These results demonstrate the 
practical relevance of our analysis.

Overall, our study takes a small step toward under-
standing the statistical properties of signatures for 
regression analysis. It fills one of the gaps between the 
theory and practice of signatures in machine learning. 
Our findings have significant implications for various 
applications in operations research by guiding the selec-
tion of the appropriate signature definition to achieve 
better statistical properties and predictive performance. 
For example, our study provides a theoretical founda-
tion for the signature-based adaptive-Lasso technique 
that has been recently developed and implemented by 
Amazon for transportation marketplace rate forecasting 
and financial planning (Gu et al. 2024). This simple and 
novel model is reported to have generated tens of mil-
lions of monetary benefits for Amazon and demon-
strates strong potential for a wide range of applications, 
especially when compared with existing models such as 
Autoregressive Integrated Moving Average (ARIMA) 
in terms of dealing with nonstationary data and deep 
neural network approach in terms of interpretability 
and for limited and fragmented data.

1.3. Notation
Here, we define the vector and matrix norms used 
throughout the paper. For a vector x � (x1, : : : , xn)

⊤
∈ Rn, 

we define ‖x‖1 � |x1 | +⋯ + |xn | , ‖x‖2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1+⋯ +x2

n

q

, and 
‖x‖∞ �max1≤ i≤n |xi | ; for a matrix A ∈ Rm×n, we define 
‖A‖1 �max1≤ j≤n

Pm
i�1 |aij | , ‖A‖2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λmax(A⊤A)

p
, and ‖A‖∞

�max1≤ i≤m
Pn

j�1 |aij | , where Λmax(·) calculates the largest 
eigenvalue of a matrix, while Λmin(·) represents its smal-
lest eigenvalue.

1.4. Outline
The rest of this paper is organized as follows. Section 2
introduces the problem and key technical background. 
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Section 3 presents the main theoretical results, including 
the uniqueness of universal nonlinearity, the correlation 
structure of signature, and the consistency of signature 
using Lasso regression. Section 4 presents a simulation 
study to gain additional insights. Section 5 applies our 
results to learning nonlinear functions and option 
prices. Finally, Section 6 concludes.

2. Background
In this section, we present the technical background to 
study the consistency of feature selection with signature 
transform using Lasso regression.

2.1. Definition of Signature Transform
Consider a d-dimensional continuous-time stochastic 
process Xt � (X1

t , X2
t , : : : , Xd

t )
⊤
∈ Rd, 0 ≤ t ≤ T on a prob-

ability space (Ω,F , {F t}t≥0,P).4 Its signature or signa-
ture transform is defined as follows.

Definition 1 (Signature). For k ≥ 1 and i1, : : : , ik ∈ {1, 2, 
: : : , d}, the kth-order signature component of the process 
X with index (i1, : : : , ik) from time 0 to t is defined as

S(X)i1, : : : , ik
t �

Z

0< t1< : : :< tk < t
dXi1

t1
⋯ dXik

tk
, 0 ≤ t ≤ T: (1) 

The 0th-order signature component of X from time 0 to t 
is defined as S(X)0t � 1 for any 0 ≤ t ≤ T. The signature 
of X is the collection of all the signature components of 
X. The signature of X with orders truncated to K is the 
collection of all the signature components of X with 
orders no more than K.

The kth order signature component of X given by (1) 
is its k-fold iterated path integral along the indices 
i1, : : : , ik. For a given order k, there are dk choices of indi-
ces (i1, : : : , ik), and therefore the number of all kth-order 
signature components is dk.

The integral in (1) can be specified using different defi-
nitions. For example, if X is a deterministic process, it can 
be defined via the Riemann/Lebesgue integral. If X is a 
multidimensional Brownian motion, it is a stochastic 
integral defined by either the Itô integral or the Stratono-
vich integral. Throughout the paper, for clarity, we write

S(X)i1, : : : , ik, I
t �

Z

0< t1 <⋯< tk < t
dXi1

t1
⋯ dXik

tk

�

Z

0< s< t
S(X)i1, : : : , ik�1, I

s dXik
s 

when using the Itô integral, and

S(X)i1, : : : , ik , S
t �

Z

0< t1 <⋯< tk < t
dXi1

t1
◦ ⋯ ◦dXik

tk

�

Z

0< s< t
S(X)i1, : : : , ik�1, S

s ◦ dXik
s 

when using the Stratonovich integral. For ease of expo-
sition, we refer to the signature of X as the Itô 

(respectively, Stratonovich) signature if the integral is 
defined in the sense of the Itô (respectively, Stratono-
vich) integral.

2.2. Universal Nonlinearity of Signature
One of the remarkable properties of the signature is its 
universal nonlinearity (Levin et al. 2016, Király and Ober-
hauser 2019, Fermanian 2021, Lemercier et al. 2021, Lyons 
and McLeod 2022).5 It is particularly relevant for feature 
selection in statistical and machine learning, where one 
needs to find or learn a (nonlinear) function f that maps 
the path of X to a target label y. Examples include learning 
diagnosis or signals from medical time series such as the 
electrocardiogram (Morrill et al. 2019, 2020b, 2021), fore-
casting transportation marketplace rates from the time 
series of supply, demand, and macroeconomic factors 
(Gu et al. 2024), and learning a nonlinear payoff or pric-
ing function for financial derivatives given the time 
series of the underlying asset prices (Hutchinson et al. 
1994, Bertsimas et al. 2001, Lyons et al. 2020).

The following theorem of Cuchiero et al. (2023) out-
lines the universal nonlinearity.

Theorem 1 (Universal Nonlinearity: Cuchiero et al. 2023, 
Theorem 2.12). Let Xt be a continuous Rd-valued semimar-
tingale and S be a compact subset of paths of the time- 
augmented process X̃t � ( t, X⊤t )

⊤ from time 0 to T.6
Assume that f : S→ R is a real-valued continuous func-
tion. Then, for any ε > 0, there exists a linear functional L :

R∞ → R such that
sup
s∈S
| f (s)� L(Sig(s)) | < ε, 

where Sig(s) is the signature of s.

By universal nonlinearity, any continuous function f 
can be approximated arbitrarily well by a linear combi-
nation of the signature of X. This lays the foundation for 
learning the relationship between the time series X and 
a target label y using a linear regression.

2.3. Feature Selection with Signature Using 
Lasso Regression

Consider N pairs of samples, (X1, y1), (X2, y2), : : : , (XN, 
yN), where Xn � {Xn, t}0≤ t≤T is the nth path realization 
of Xt for n � 1, 2, : : : , N. Given a fixed order K ≥ 1, 
assume that (Xn, yn) satisfies the following regression 
model:

yn � β0 +
Xd

i1�1
βi1 S(Xn)

i1
T +

Xd

i1, i2�1
βi1, i2 S(Xn)

i1, i2
T +⋯

+
Xd

i1, : : : , iK�1
βi1, : : : , iK S(Xn)

i1, : : : , iK
T + εn, (2) 

where {εn}
N
n�1 are independent and identically distrib-

uted errors following a normal distribution with zero 
mean and finite variance. Here the number of 
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predictors, that is, the signature components of various 
orders, is (dK+1 � 1)=(d� 1), including the 0th-order sig-
nature component S(X)0T � 1, whose coefficient is β0.

Recall that the goal of Lasso regression is to identify a 
sparse set of true predictors/features among all the pre-
dictors included in Linear Regression (2). A predictor 
has a zero beta coefficient if it is not in the true model. 
We use A∗k to represent the set of all signature compo-
nents of order k with nonzero coefficients in (2), and 
define the set of true predictors A∗ by

A∗ �
[K

k�0
A∗k :�

[K

k�0
{(i1, : : : , ik) : βi1, : : : , ik ≠ 0}: (3) 

Here, we begin the union with k � 0 to include the 0th- 
order signature for notational convenience.

Given a tuning parameter λ > 0 and N samples, the 
Lasso estimator identifies the true predictors using

b̂N(λ)�arg min
b̂

"
XN

n�1

 

yn� β̂0�
Xd

i1�1
β̂i1 S̃(Xn)

i1
T

�
Xd

i1,i2�1
β̂i1, i2 S̃(Xn)

i1,i2
T �⋯

�
Xd

i1, :: :,iK�1
β̂i1, : :: , iK S̃(Xn)

i1, : :: , iK
T

!2

+λ‖b̂‖1

#

,

(4) 

where b̂ is the vector containing all coefficients β̂i1, : : : , ik . 
Here, S̃(Xn) represents the standardized version of 
S(Xn) across N samples by the l2-norm. That is, for any 
index (i1, : : : , ik),7

S̃(Xn)
i1, : : : , ik
T �

S(Xn)
i1, : : : , ik
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
m�1 [S(Xm)

i1, : : : , ik
T ]

2
=N

q , n� 1,2, : : : ,N:

The Lasso estimator depends on the choice of K. The 
universal nonlinearity demonstrates that the linear combi-
nation of all components of the signature of X can be used 
to approximate f. However, because of computational 
constraints, we must truncate the signature to a finite 
order K in the implementation of Lasso regression. In the-
ory, one can exploit the signature approximation in 
Dupire and Tissot-Daguette (2022) and the recent results 
on Taylor expansions of signatures in Cuchiero et al. 
(2025) to develop an error-bound analysis for the choice 
of K. Fermanian (2022) also provides a practical approach 
to choose K based on the tradeoff between the approxima-
tion error and the number of coefficients in the regression 
model. In practice, it has also been documented that a 
small order K usually suffices to achieve satisfactory per-
formances (Morrill et al. 2020a, Lyons and McLeod 2022, 
Gu et al. 2024). For example, Gu et al. (2024) show that K 
� 3 is sufficient for forecasting models of transportation 
rates in Amazon.

2.4. Consistency and the Irrepresentable 
Condition of Lasso Regression

Our goal is to study the consistency of feature selection 
with signature using the Lasso estimator in (4). Broadly 
speaking, consistency means that the Lasso estimator 
converges to the true coefficients as the number of sam-
ples increases. In this section, we introduce two widely 
used notions of Lasso consistency from the literature 
and discuss the corresponding conditions required for 
each notion of consistency.

Zhao and Yu (2006) propose the sign consistency for 
Lasso regression, which requires that the signs of all com-
ponents of the Lasso estimator match those of the true 
coefficients as the number of samples increases without 
bound. Wainwright (2009) studies the consistency of 
Lasso regression by requiring that the l∞ distance between 
the true and the estimated coefficients is bounded.

In the context of Lasso regression with signature, the 
sign consistency and the l∞ consistency of Lasso are 
defined as follows.

Definition 2 (Sign Consistency). Lasso regression is 
(strongly) sign consistent if there exists λN, a function 
of sample number N, such that

lim
N→+∞

P(sign(b̂N(λN)) � sign(b)) � 1, 

where b̂N(·) is the Lasso estimator given by (4), b is a 
vector containing all beta coefficients of the true model 
(2), and the function sign(·) maps positive entries to 1, 
negative entries to –1, and zero to 0.

Definition 3 (l∞ Consistency). There exists a function of 
λN, g(λN), such that the Lasso regression satisfies the 
l∞ bound

‖b̂N(λN)� b̃‖∞ ≤ g(λN), 
where b̂N(·) is the Lasso estimator given by (4), and b̃ is 
a vector containing all standardized beta coefficients of 
the true model whose component with index (i1, : : : , ik)
is given by

β̃i1, : : : , ik � βi1, : : : , ik ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
XN

m�1
[S(Xm)

i1, : : : , ik
T ]

2

v
u
u
t :

As discussed in Wainwright (2009), if the support of 
b̂N(λN) is contained within the support of b and the 
absolute values of all beta coefficients for predictors in 
A∗ are greater than g(λN), the l∞ consistency implies the 
sign consistency.

To guarantee the consistency of Lasso, Zhao and Yu 
(2006) and Wainwright (2009) propose the following 
two irrepresentable conditions, respectively.

Definition 4 (Irrepresentable Condition). The feature 
selection in (2) satisfies irrepresentable condition I if 
there exists a constant γ ∈ (0, 1] such that

I: ‖∆A∗c , A∗∆
�1
A∗, A∗sign(bA∗ )‖∞ ≤ 1� γ, 
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and satisfies irrepresentable condition II if there exists a 
constant γ ∈ (0, 1] such that

II: ‖∆A∗c, A∗∆
�1
A∗, A∗ ‖∞ ≤ 1� γ, 

where A∗ is given by (3), A∗c is the complement of 
A∗, ∆A∗c , A∗ (∆A∗, A∗) represents the correlation matrix8

between all predictors in A∗c and A∗ (A∗ and A∗), and bA∗
represents a vector formed by beta coefficients for all 
predictors in A∗.

The irrepresentable conditions in Definition 4 intui-
tively mean that irrelevant predictors in A∗c cannot be 
adequately represented by the true predictors in A∗, 
implying weak collinearity between the predictors. 
Zhao and Yu (2006) demonstrate that the irrepresenta-
ble condition I is almost a necessary and sufficient con-
dition for the Lasso regression to be sign consistent. 
Wainwright (2009) proves that the irrepresentable con-
dition II is a sufficient condition for the l∞ consistency of 
Lasso regression under specific technical assumptions. 
The irrepresentable condition II is slightly stronger than 
the irrepresentable condition I.

In the context of signature, predictors in Linear 
Regression (2) are correlated and have special correla-
tion structures that differ from previous studies on 
Lasso (Zhao and Yu 2006, Bickel et al. 2009, Wainwright 
2009). We show in the following section that in fact their 
correlation structures vary with the underlying process 
X and the choice of integrals in the definition of Signa-
ture (1). These different correlation structures lead to 
different statistical consistencies.

3. Theoretical Results
This section presents the main theoretical results. Sec-
tion 3.1 shows the uniqueness of universal nonlinearity 

in a probabilistic sense. Section 3.2 characterizes the cor-
relation structures between signature components. Sec-
tion 3.3 presents the results of consistency in signature 
selection, both asymptotically (N �∞) and for a finite 
sample (N < ∞).

As outlined in Figure 1 for our results, the statistical 
consistency of signature using Lasso regression 
depends on two factors—the underlying processes X 
(Brownian motion or OU process) and the definition of 
signature (Itô or Stratonovich).

3.1. Uniqueness of Universal Nonlinearity
The universal nonlinearity in Theorem 1 shows the exis-
tence of a linear combination of signature components to 
approximate any function f. We provide the following 
Theorem 2 to complement the universal nonlinearity, 
which demonstrates the uniqueness of this linear combi-
nation in a probabilistic sense given an order of trun-
cated signature. To the best of our knowledge, Theorem 
2 has not appeared in the literature.

Theorem 2 (Uniqueness). Given K ≥ 1, let S � (S1, S2, : : : , 
Sp)
⊤ be the vector of the signature of a stochastic process X 

with orders truncated to K, and assume S has a nondegene-
rate joint distribution. Consider two different linear 
combinations of signature components, La �

Pp
i�1 aiSi and 

Lb �
Pp

i�1 biSi, such that ai ≠ bi for at least some i. Then, 
there exists a constant θ > 0 such that, for any η ∈ (0,η),

P( |La� Lb | > η) ≥ P∗θ(η) > 0: (5) 

Furthermore, if f is a function that maps X to a real value 
such that | f (X)� La | ≤ ε�almost surely for a constant 
ε < η, then for any η ∈ (0,η� ε),

P( | f (X)� Lb | > η) ≥ P∗θ(η+ ε) > 0: (6) 

Figure 1. Outline of Main Theoretical Results 
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Here

P∗θ(η) � 1� 1
θ

� �

·

E
Pp

i�1 ciSi

� �2
| ‖S‖2 ≤θ

ffiffiffiffiffiffiffiffiffi
p‖Σ‖2
√h i

θ‖C‖∞p
ffiffiffiffiffiffiffi
‖Σ‖2
√ � η

θ‖C‖∞p
ffiffiffiffiffiffiffiffiffiffi
‖Σ‖2

p
� η

,

η � min
E[(
Pp

i�1 ciSi)
2
| ‖S‖2 ≤ θ

ffiffiffiffiffiffiffiffiffiffiffiffi
p‖Σ‖2

p
]

θ‖C‖∞p
ffiffiffiffiffiffiffiffiffiffi
‖Σ‖2

p ,
(

θ‖C‖∞p
ffiffiffiffiffiffiffiffiffiffi
‖Σ‖2

p
�

, 

with ci � ai� bi, C � (c1, c2, : : : , cp)
⊤, and Σ � E(SS⊤).

Theorem 2 has important implications for selecting 
signature components using Lasso regression. In partic-
ular, (6) shows that when a nonlinear function f is 
approximated by a linear combination of signature com-
ponents La, there is always a positive probability that a 
different linear combination Lb has a positive gap from f, 
which implies that La is the unique linear combination 
to approximate f given an order of truncated signature 
K.9 Therefore, given f, it is important for any feature 
selection procedure to recover this unique linear combi-
nation of signature components to achieve statistical 
consistency in feature selection.

There is a strand of literature focusing on whether sig-
natures can uniquely determine the path of the underly-
ing process (Hambly and Lyons 2010, Le Jan and Qian 
2013, Boedihardjo et al. 2014). This literature investi-
gates the one-to-one correspondence between X and its 
signature. This is different from Theorem 2, which char-
acterizes the one-to-one correspondence between f (X)
and the linear combination of signature components.

3.2. Correlation Structure of Signature
Now we study the correlation structure of the four com-
binations of processes and signatures in Figure 1. 
Throughout the paper, we define X � {Xt}t≥0 as a d- 
dimensional Brownian motion on a probability space 
(Ω,F , {F t}t≥0,P) if

Xt � (X1
t , X2

t , : : : , Xd
t )
⊤
� Γ(W1

t , W2
t , : : : , Wd

t )
⊤, (7) 

where W1
t , W2

t , : : : , Wd
t are mutually independent one- 

dimensional standard Brownian motions on R, and Γ�is 
a matrix independent of t. In particular, 〈Xi

t, Xj
t〉 �

ρijσiσjt with ρijσiσj � (ΓΓ
⊤)ij, where σ2

i t is the variance of 
Xi

t and ρij ∈ [�1, 1] is the interdimensional correlation 
between Xi

t and Xj
t.

We say that X � {Xt}t≥0 is a d-dimensional OU process 
on a probability space (Ω,F , {F t}t≥0,P) if

Xt � (X1
t , X2

t , : : : , Xd
t )
⊤
� Γ(Y1

t , Y2
t , : : : , Yd

t )
⊤, (8) 

where Γ�is a d × d matrix independent of t, and Y1
t , Y2

t , 
: : : , Yd

t are mutually independent one-dimensional OU 
processes on R driven by stochastic differential equations

dYi
t ��κiYi

tdt+dWi
t, Yi

0 � 0, 

for i � 1, 2, : : : , d. Here κi > 0 are parameters to control 
the speed of mean reversion and a higher κi implies a 
stronger mean reversion. When κi � 0, Yi

t reduces to a 
standard Brownian motion.

3.2.1. Itô Signature of Brownian Motion. The following 
proposition gives the moments of the Itô signature of a 
d-dimensional Brownian motion.

Proposition 1. Let X be a d-dimensional Brownian motion 
given by (7). For m, n ∈ Z+ and m ≠ n,

E[S(X)i1,: : : , in,I
t ]�0, E[S(X)i1,: :: ,in ,I

t S(X)j1,: :: ,jn ,I
t ]�

tn

n!

Yn

k�1
ρikjkσikσjk ,

E[S(X)i1,: : : , in,I
t S(X)j1,: : : , jm,I

t ]�0:

With Proposition 1, the following result explicitly char-
acterizes the correlation structure of the Itô signature for 
Brownian motion.
Theorem 3. Let X be a d-dimensional Brownian motion 
given by (7). If the signature is rearranged in recursive 
order (see Definition B.1 in Online Appendix B.1), then the 
correlation matrix for the Itô signature of X with orders 
truncated to K is a block diagonal matrix given by

∆1 � diag{Ω0, Ω1, Ω2, : : : , ΩK}, (9) 

where each diagonal block Ωk represents the correlation 
matrix for all kth-order signature components given by

Ωk � Ω ⊗Ω⊗ ⋯ ⊗Ω|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k

, k � 1, 2, : : : , K, (10) 

and Ω0 � 1. Here ⊗ represents the Kronecker product and Ω
is a d × d matrix with ρij being the (i, j)th entry.

Theorem 3 shows that the Itô signature components 
of different orders are mutually uncorrelated, leading to 
a block diagonal correlation structure; the correlation 
between signature components of the same order has a 
Kronecker product structure determined by the correla-
tion ρij of the Brownian motion.

The block diagonal structure of the correlation matrix 
has important statistical implications for the Itô signa-
ture. In Section 3.3, we demonstrate that the Lasso 
regression using signature as predictors is consistent if 
the correlation is weak (see Theorems 5 and 7). How-
ever, when the correlation within each block is strong, 
Lasso may be unstable for signature components in the 
same block. In such cases, one may consider using meth-
ods such as sparse principal component analysis (Zou 
et al. 2006, Leng and Wang 2009) or scaled Lasso (Arashi 
et al. 2021) to address multicollinearity and achieve a 
more stable Lasso estimation.

3.2.2. Stratonovich Signature of Brownian Motion and 
Both Signatures of OU Process. We first provide the 
moments of the Stratonovich signature of Brown-
ian motion.

Guo et al.: On Consistency of Signature Using Lasso 
6 Operations Research, Articles in Advance, pp. 1–20, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

71
.2

35
.2

52
.1

41
] 

on
 0

5 
M

ay
 2

02
5,

 a
t 0

9:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Proposition 2. Let X be a d-dimensional Brownian motion 
given by (7). For m, n ∈ Z+, we have

E[S(X)i1, : : : ,i2n�1,S
t ]�0, E[S(X)i1, : : : , i2n,S

t ]�
1
2n

tn

n!

Yn

k�1
ρi2k�1i2k

Y2n

k�1
σik ,

E[S(X)i1, : : : ,i2n ,S
t S(X)j1,: : : , j2m�1,S

t ]�0, 

and E[S(X)i1, : : : , i2n, S
t S(X)j1, : : : , j2m, S

t ] and E[S(X)i1, : : : , i2n�1, S
t 

S(X)j1, : : : , j2m�1, S
t ] can be calculated using formulas provided in 

Proposition B.1 in Online Appendix B.1.

The calculation of moments for the OU process is 
more complicated than those for the Brownian motion, 
as discussed in Online Appendix B.2. Nonetheless, the 
correlation matrices of both the Itô and the Stratonovich 
signatures of the OU process exhibit the same odd–even 
alternating structure as that of the Stratonovich signa-
ture of the Brownian motion, which is given below.

Theorem 4. Consider the Stratonovich signature of a 
d-dimensional Brownian motion given by (7), or the Itô or the 
Stratonovich signature of a d-dimensional OU process given by 
(8). The correlation matrix for the signature with orders trun-
cated to 2K has an odd–even alternating structure given by

∆2�

Ψ0,0 0 Ψ0,2 0 ⋯ 0 Ψ0,2K

0 Ψ1,1 0 Ψ1,3 ⋯ Ψ1,2K�1 0
Ψ2,0 0 Ψ2,2 0 ⋯ 0 Ψ2,2K

0 Ψ3,1 0 Ψ3,3 ⋯ Ψ3,2K�1 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 Ψ2K�1,1 0 Ψ2K�1,3 ⋯ Ψ2K�1,2K�1 0
Ψ2K,0 0 Ψ2K,2 0 ⋯ 0 Ψ2K,2K

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

,

(11) 

where Ψm, n is the correlation matrix between all mth and nth 
order signature components.10 In particular, if the indices of 
the signature components are rearranged with all odd-order 
signature components and all even-order signature compo-
nents together, respectively, the correlation matrix has a block 
diagonal form given by

∆̃
2
� diag{Ψodd,Ψeven}, (12) 

where

Ψodd �

Ψ1,1 Ψ1,3 ⋯ Ψ1,2K�1

Ψ3,1 Ψ3,3 ⋯ Ψ3,2K�1

⋮ ⋮ ⋯ ⋮

Ψ2K�1,1 Ψ2K�1,3 ⋯ Ψ2K�1,2K�1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

,

Ψeven �

Ψ0,0 Ψ0,2 ⋯ Ψ0,2K

Ψ2,0 Ψ2,2 ⋯ Ψ2,2K

⋮ ⋮ ⋯ ⋮

Ψ2K,0 Ψ2K,2 ⋯ Ψ2K,2K

0

B
B
B
B
B
@

1

C
C
C
C
C
A

: (13) 

Theorems 3 and 4 reveal a striking difference between 
the four combinations of processes and signatures in 
Figure 1. Specifically, a Brownian motion’s Itô signature 
components of different orders are uncorrelated, lead-
ing to a block diagonal correlation structure. In contrast, 
for the Stratonovich signature of Brownian motion and 
both signatures of the OU process, the components are 
uncorrelated only if they have different parity, leading 
to an odd–even alternating structure. This difference 
has significant implications for the consistency of the 
four combinations of processes and signatures, as will 
be discussed in Section 3.3.

Finally, signature-based analyses sometimes consider 
time augmentation in which a time dimension t is added 
to the original process Xt (Chevyrev and Kormilitzin 
2016, Lyons and McLeod 2022). Online Appendix A 
provides the correlation structure and consistency 
results of the time-augmented processes.

3.3. Consistency of Signature Using 
Lasso Regression

This section investigates the consistency of feature selec-
tion using the four combinations of processes and signa-
tures in Figure 1.

3.3.1. Asymptotic Results. The following theorem char-
acterizes the conditions under which the irrepresentable 
condition holds for the Itô signature of Brownian motion.

Theorem 5. For a multidimensional Brownian motion 
given by (7), consider its Itô signature with orders trun-
cated to K. Both irrepresentable conditions I and II hold if 
and only if they hold for each Ωk in (10). In addition, both 
irrepresentable conditions I and II hold if

|ρij | <
1

2qmax � 1 , (14) 

where qmax �max0≤ k≤K{#A∗k} and A∗k is the set of true pre-
dictors of order k defined in (3).

The sufficient condition (14) in Theorem 5 requires 
that different dimensions of the multidimensional 
Brownian motion are not strongly correlated, with a suf-
ficient bound given by (14). Empirically, it has been 
documented that a small K suffices to provide a reason-
able approximation in applications (Morrill et al. 2020a, 
Lyons and McLeod 2022). Therefore, qmax is typically 
small, which implies that the bound given by (14) is 
fairly easy to satisfy. In addition, Online Appendix C.1 
discusses the tightness of this bound.

In fact, Zhao and Yu (2006, corollary 2) demonstrate 
that any Lasso regression is consistent if the absolute 
values of the correlations between predictors are smaller 
than 1=(2q� 1), where q � #A∗ is the total number of true 
predictors in the Lasso regression. Our sufficient Condi-
tion (14) provides a much more relaxed upper bound 
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compared with the condition of Zhao and Yu (2006), 
thanks to the block diagonal correlation structure of the 
Itô signature for Brownian motion given by Theorem 3. 
This is because A∗k is the set of true predictors in the kth 
block of (9), and qmax is the maximum number of true pre-
dictors across all these blocks. In other words, even with a 
large number of all true predictors (#A∗) in the Lasso 
regression, it remains consistent as long as the number of 
true predictors within each block (#A∗k) is relatively small.

The following theorem characterizes the condition 
under which the irrepresentable condition holds for the 
Stratonovich signature of a Brownian motion and for 
both signatures of the OU process.

Theorem 6. Consider the Stratonovich signature of a 
d-dimensional Brownian motion given by (7), or the Itô or 
the Stratonovich signature of a d-dimensional OU process 
given by (8), with orders truncated to 2K. Both irrepresen-
table conditions I and II hold if and only if they hold for 
both Ψodd and Ψeven in (13).

For these types of signatures, the irrepresentable con-
dition may fail even when all dimensions of X are mutu-
ally independent, as is shown in Example 3.4 in Online 
Appendix B. Therefore, no sufficient conditions of the 
form (14) can be established. This implies that, for exam-
ple, the Stratonovich signature of Brownian motion may 
exhibit lower consistency compared with its Itô signa-
ture, which we confirm in Section 4.

3.3.2. Finite Sample Results. Theorems 5 and 6 charac-
terize when the irrepresentable conditions hold for the 
population correlation matrix of signature, which 
implies the sign consistency (Definition 2) of Lasso 
regression when N �∞. In practice, however, the num-
ber of sample paths is finite, that is, N < ∞. Hence, the 
sample correlation matrix, denoted by ∆̂, may deviate 
from the population correlation matrix ∆. The following 
results demonstrate that the Lasso regression using sig-
nature maintains consistency with high probability in 
finite sample under certain conditions.11 In addition, 
Online Appendix C.2 discusses the consistency of Lasso 
regression with general predictors in finite sample.

Theorem 7. For a multidimensional Brownian motion 
given by (7), consider a Lasso regression (4) using the 
Itô signature with orders truncated to K as predictors. Let 
ρ �maxi≠j{ |ρij | }, σ�the volatility of εn in (2), qmax �

max0≤ k≤K{#A∗k}, and p the number of predictors in the 
Lasso regression. If (14) holds and the sequence of regulari-

zation parameters {λN} satisfies λN >
4σ(1�(qmax�1)ρ)

1�(2qmax�1)ρ

ffiffiffiffiffiffiffiffi
2 lnp

N

q

, 

then the following properties hold with probability greater than

P1
min :� 1� 8p4σ4

max(σ
4
min + c1)

Nξ2σ4
min

 !

(1� 4e�c2Nλ2
N ) (15) 

for some positive constants c1 and c2. 

a. The Lasso regression has a unique solution b̂N(λN) ∈

Rp with its support contained within the true support, and 
b̂N(λN) satisfies

‖b̂N(λN)� b̃‖∞ ≤ λN

2

6
4

3� (2qmax � 3)ρ
(1� (qmax � 1)ρ)(2 + 2ρ)

+ 4σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q
1
2
max

(1� (qmax � 1)ρ

v
u
u
t

3

7
5≕ h(λN):

b. If in addition mini∈A∗ | β̃i | > h(λN), then sign(b̂N(λN))

� sign(b̃).
Here, ξ �min g�1

Σ
(1�(2qmax�1)ρ)(1�(qmax�1)ρ)

3�(2qmax�3)ρ

� �
, g�1
Σ

1�(qmax�1)ρ
2 ffiffiffiffiffiffiffiffipqmax
√

� �n o
> 0 

with

gΣ(x) �
2xσ2

min(p� 1)ρ
(σ2

min� x)(2σ2
min� x)

+
(p� 1)x
σ2

min� x
, (16) 

σmin �min1≤ i≤p
ffiffiffiffiffiffi
Σii
√

, σmax �max1≤ i≤p
ffiffiffiffiffiffi
Σii
√

, and Σ�the 
population covariance matrix of all predictors in (2).

Part (a) of Theorem 7 demonstrates that, for a Brown-
ian motion, when using the Itô signature as predictors, 
the difference between the coefficients estimated using 
Lasso regression and the true values can be bounded, 
leading to the l∞ consistency. Part (b) shows that the sign 
consistency of Lasso regression holds if the magnitudes 
of true parameters are sufficiently large. Both results hold 
with a probability of at least P1

min. In particular, the lower 
bound probability (15) characterizes how likely the Lasso 
regression can recover the true set of signature compo-
nents. This probability converges to one at a polynomial 
rate of N�1 as the number of samples increases without 
bound. Clearly, taking partial derivatives yields the fol-
lowing proposition, which illustrates how this probabil-
ity varies with different parameters of the model.12

Proposition 3. Holding other parameters constant, the 
lower bound of probability P1

min given by (15) 
i. Decreases with respect to ρ, p, and qmax, which corre-

spond to the upper bound of the interdimensional correlation 
of the Brownian motion, the number of predictors in the Lasso 
regression, and the number of true predictors, respectively; and

ii. Increases with respect to N, the number of sample 
paths.

Proposition 3 demonstrates that the Lasso regression 
is (more likely to be) consistent when different dimen-
sions of the Brownian motion are less correlated or 
when there are fewer predictors and true predictors in 
the model, or when more samples are observed. These 
findings align with general intuition.

The following results demonstrate the consistency of 
Lasso regression when using the Stratonovich signature 
as predictors for Brownian motion or using the Itô or 
Stratonovich signature as predictors for the OU process.
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Theorem 8. Consider a Lasso regression (4) using the 
Stratonovich signature as predictors for a multidimensional 
Brownian motion given by (7) or the Itô or Stratonovich 
signature as predictors for a multidimensional OU process 
given by (8), with orders truncated to 2K. Let σ�be the vola-
tility of εn in (2) and p be the number of predictors in the 
Lasso regression. If the irrepresentable condition II holds for 
both Ψodd and Ψeven given by (13), and the sequence of reg-

ularization parameters {λN} satisfies λN >
4σ
γ

ffiffiffiffiffiffiffiffi
2 lnp

N

q

, then 
the following properties hold with probability greater than

P2
min :� 1� 8p4σ4

max(σ
4
min + c1)

Nξ2σ4
min

 !

(1� 4e�c2Nλ2
N ) (17) 

for some positive constants c1 and c2. 
a. The Lasso regression has a unique solution b̂N(λN) ∈

Rp with its support contained within the true support, and 
b̂N(λN) satisfies

‖b̂N(λN)� b̃‖∞ ≤ λN
ζ(2+ 2αζ+ γ)

2+ 2αζ +
4σ
ffiffiffiffiffiffiffiffiffiffiffi
1
2Cmin

q

2

6
4

3

7
5

≕ h(λN); and 

b. If in addition mini∈A∗ | β̃i | > h(λN), then sign(b̂N(λN))

� sign(b̃).
Here, 

• α � ‖∆A∗cA∗ ‖∞ �max{‖Ψodd, A∗cA∗ ‖∞, ‖Ψeven, A∗cA∗ ‖∞};
• ζ � ‖∆�1

A∗A∗ ‖∞ �max{‖Ψ�1
odd, A∗A∗ ‖∞, ‖Ψ�1

even, A∗A∗ ‖∞};
• Cmin �Λmin(∆A∗A∗ ) �min{Λmin(Ψodd, A∗A∗ ),Λmin(Ψeven, A∗A∗ )};
• γ �min{1� ‖Ψodd, A∗cA∗Ψ

�1
odd, A∗A∗ ‖∞, 1� ‖Ψeven, A∗cA∗Ψ

�1
even, A∗A∗ ‖∞};

• ξ �min g�1
Σ

γ
ζ(2+2αζ+γ)

� �
, g�1
Σ

Cmin
2 ffiffip√
� �n o

> 0;
• gΣ(·) is defined by (16), σmin �min1≤ i≤p

ffiffiffiffiffiffi
Σii
√

, 
σmax �max1≤ i≤p

ffiffiffiffiffiffi
Σii
√

, and Σ�is the population covari-
ance matrix of all predictors in (2).

In comparison with the result for the Itô signature of 
Brownian motion (Theorem 7), Theorem 8 is mathemat-
ically more involved as a result of the more complex cor-
relation structure (see Theorems 3 and 4). The lower 
bound probability (17) also converges to one at a poly-
nomial rate of N�1 as the number of samples increases 
without bound. Clearly, taking partial derivatives yields 
the following proposition, which shows how the lower 
bound probability P2

min varies with the parameters.

Proposition 4. Holding other parameters constant, the 
lower bound of probability P2

min given by (17) 
i. Decreases with respect to α�and p, which correspond to 

the upper bound for the correlation between true predictors 
and false predictors and the number of predictors in the Lasso 
regression, respectively; and

ii. Increases with respect to γ�and N, which correspond to 
the degree of compliance with the irrepresentable condition II 

for the population correlation matrix and the number of sam-
ples, respectively.

Like the result for the Itô signature of Brownian 
motion (Proposition 3), Proposition 4 demonstrates that 
the Lasso regression is (more likely to be) consistent 
when there are fewer predictors in the model or when 
more samples are observed. Furthermore, a lower 
correlation between predictors and greater compliance 
with the irrepresentable condition both improve the 
consistency.

4. Simulation
We use numerical simulations to illustrate our theoreti-
cal results and gain additional insights into the consis-
tency of Lasso regression for signature transform.13

4.1. Consistency
Consider a two-dimensional (d � 2) Brownian motion 
with interdimensional correlation ρ.14 Assume that 
there are q � #A∗ true predictors in the true model (2), all 
of which are signature components up to order K � 4. 
We follow the steps below to perform our experiment. 

1. Randomly choose q true predictors from all 
dK+1�1

d�1 � 31 signature components;
2. Randomly set each beta coefficient of these true 

predictors from the standard normal distribution;
3. Generate 100 samples from this true model with 

error term εn drawn from a normal distribution with 
mean zero and standard deviation 0.01;

4. Run a Lasso regression given by (4) to select pre-
dictors based on these 100 samples; and

5. Check whether the Lasso regression is sign consis-
tent according to Definition 2.

We then repeat the above procedure 1,000 times 
and calculate the consistency rate, which is defined as the 
proportion of consistent results among these 1,000 
experiments.

Figure 2 shows the consistency rates for different 
values of interdimensional correlation ρ�and true pre-
dictors q, with Figure 2(a) for Brownian motion and 
Figure 2(b) for its discrete counterpart—the random 
walk. First, signatures for both Brownian motion and 
random walk are similar. They both exhibit higher con-
sistency rates when the absolute value of ρ�is small, that 
is, when the interdimensional correlation of either 
Brownian motion or random walk is weak. Second, as 
the number of true predictors q increases, both consis-
tency rates decrease. These findings are consistent with 
Theorem 5, Theorem 7, and Proposition 3.

Furthermore, the consistency rates for the Itô signa-
ture are consistently higher than those for the Strato-
novich signature, with ρ�and q fixed. This is consistent 
with Theorems 3 and 4—signature components of 
different orders are uncorrelated using the Itô signa-
ture but correlated using the Stratonovich signature. 

Guo et al.: On Consistency of Signature Using Lasso 
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The collinearity between the Stratonovich signature 
components contributes to their lower consistency for 
Lasso regression.

Online Appendix D.3 provides additional results for 
the impact of the number of dimensions d and the num-
ber of samples N.

4.2. Predictive Performance
A higher consistency rate of the Lasso regression is 
desirable as it is associated with better predictive perfor-
mance of the model, which we confirm in this section 
using out-of-sample data.

To this end, we conduct additional simulations for 
Brownian motion and random walk, following a simi-
lar setup as in Section 4.1, with 200 samples generated 
from the true model for each experiment. These 200 
samples are then equally divided into a training set and 
a test set, each containing 100 samples. Next, we run a 
Lasso regression on the training set and choose the tun-
ing parameter λ�using fivefold cross-validation. Finally, 
we calculate the out-of-sample mean squared error 
(OOS MSE) using the chosen λ�on the test set.

Overall, this analysis confirms that the insights 
derived from sign consistency extend to predictive per-
formance metrics. In particular, Figure 3 shows the OOS 

MSE for different values of the interdimensional corre-
lation ρ�and different numbers of true predictors q. 
First, Lasso regression shows lower OOS MSE when 
the absolute value of ρ�is small, that is, when the in-
terdimensional correlations are weak. Second, as the 
number of true predictors q increases, the OOS MSE 
increases. Finally, the Itô signature has a lower OOS MSE 
compared with the Stratonovich signature with fixed ρ�
and q.

4.3. Impact of Mean Reversion
To study the impact of mean reversion on the consis-
tency of Lasso regression, we run simulations for both 
the OU process and its discrete counterpart—the autore-
gressive AR(1) model with parameter φ. Recall that 
higher values of κ�for the OU process and lower values 
of φ�for the AR(1) model imply stronger mean reversion. 
We consider two-dimensional OU and AR(1) processes, 
with both dimensions sharing the same parameters (κ�
and φ). The interdimensional correlation matrix ΓΓ⊤ is 
randomly drawn from the Wishart(2, 2) distribution. All 
other setups are the same as the Brownian motion 
experiment in Section 4.1.

Figure 4 shows the simulation results for the consis-
tency rates of both processes. First, the Itô signature 

Figure 3. (Color online) OOS MSE for the Brownian Motion and Random Walk with Different Values of Interdimensional Cor-
relation ρ�and Different Numbers of True Predictors q 

(a) Brownian motion (b) Random walk

Note. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.

Figure 2. (Color online) Consistency Rates for the Brownian Motion and Random Walk with Different Values of Interdimen-
sional Correlation ρ�and Different Numbers of True Predictors q 

(a) Brownian motion (b) Random walk

Note. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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reaches the highest consistency rate when κ�and 1�φ�
approach zero, which corresponds to a Brownian 
motion and a random walk. Second, when the process is 
sufficiently mean reverting, the Stratonovich signature 
has higher consistency rates than the Itô signature. 
Finally, Lasso regression becomes less consistent as the 
number of true predictors q increases, a similar observa-
tion as in the experiment for Brownian motion.

Overall, these results suggest that, for processes that 
are sufficiently rough or mean reverting (Gatheral et al. 
2018), using Lasso regression with the Stratonovich sig-
nature will likely lead to a higher statistical consistency 
and better out-of-sample predictive performance com-
pared with the Itô signature. Online Appendix B.2 pro-
vides more theoretical explanations, and Online 
Appendix D.4 examines the more complex ARIMA 
processes.

5. Applications
In this section, we use both the Itô and the Stratonovich 
signatures to understand the implication of their statisti-
cal properties in real applications. In particular, Section 
5.1 uses the signature transform to learn option payoffs 
based on its universal nonlinearity, and Section 5.2 illus-
trates the application of the signature transform in 
option pricing.

5.1. Learning Option Payoffs
Option payoffs are nonlinear functions of the underly-
ing asset. We first show that Lasso regression using sig-
nature as predictors can approximate these nonlinear 
functions well in terms of regression R2. We then use the 
results derived in Sections 3.3 and 4 to guide the selec-
tion between the Itô and Stratonovich signatures.

5.1.1. Fitting Performance. We consider two underly-
ing assets, X1

t and X2
t , both of which following geometric 

Brownian motions with X1
0 � X2

0 � 1, µ1 � µ2 � 0, and 
σ1 � σ2 � 0:2. The correlation between the two assets is 

0.6. We consider the following eight option payoff func-
tions with time to maturity T � 1. In the simulation, we 
employ the Euler-Maruyama method for discretization 
and divide the time interval into 1,000 steps. 

a. Call option (d � 1): max(X1
T � 1:2, 0);

b. Put option (d � 1): max(0:8�X1
T, 0);

c. Asian option (d � 1): max(mean0≤ t≤T(X1
t )� 1:2, 0);

d. Lookback option (d � 1): max(max0≤ t≤T(X1
t )� 1:2, 0);

e. Rainbow option I (d � 2): max(X1
T �X2

T, 0);
f. Rainbow option II (d � 2): max(max(X1

T, X2
T)� 1:2, 0);

g. Rainbow option III (d � 2): max(max0≤ t≤T(X1
t )�

max0≤ t≤T(X2
t ), 0); and

h. Rainbow option IV (d � 2): max(mean0≤ t≤T(X1
t )+

mean0≤ t≤T(X2
t )� 2:4, 0).

The first two are standard options most commonly 
used in practice; the third and fourth have payoff func-
tions that depend on the entire path of the underlying 
prices; and the last four have payoff functions relying 
on multidimensional underlying paths, with the fifth 
and sixth depending only on the terminal values and 
the seventh and eighth depending on the entire path.

For each option payoff and for K � 6,15 we perform 
Lasso regression using the following three different 
types of predictors. 

1. The Stratonovich signature of the path of the 
underlying asset(s) with orders up to K (denoted as 
“Sig”)

2. A set of p � dK+1�1
d�1

� �
randomly sampled points from 

the path of the underlying asset(s) (denoted as “RSam”)
3. A set of p � dK+1�1

d�1

� �
equidistant points from the 

path of the underlying asset(s) (denoted as “USam”)
The training set for the Lasso regression consists of 

200 simulated paths, and the test set consists of 100 sim-
ulated paths. We repeat each experiment 200 times to 
derive confidence intervals for the estimates.

Results. Figure 5 shows the relationship between R2 

and the penalization parameter of the Lasso regression 
λ, when using different types of predictors. Both 

Figure 4. (Color online) Consistency Rates for the OU Process and the AR(1) Model with Different Parameters (κ�and 1�φ) 
and Different Numbers of True Predictors q 

(a) OU process (b) AR(1) model

Note. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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in-sample and out-of-sample R2 for Lasso regression 
with signature components as predictors consistently 
outperform those for Lasso regression with random 
sampling and equidistant sampling as predictors. This 
demonstrates the effectiveness of the signature trans-
form in approximating various nonlinear payoff func-
tions, thanks to its universal nonlinearity.

Figure 6 further shows the Lasso paths as a function 
of the penalization parameter λ�when using signature 
components as predictors.16 The fairly narrow range of 
the 90% confidence intervals of the parameters indicates 
the stability of the estimated coefficients across repeated 
experiments, consistent with the uniqueness of the uni-
versal nonlinearity of signature (Theorem 2).

Figure 5. (Color online) In-Sample and Out-of-Sample R2 for Learning Option Payoffs Using Different Types of Predictors 

(a) Call option (b) Put option

(c) Asian option (d) Lookback option

(e) Rainbow option I (f) Rainbow option II

(g) Rainbow option III (h) Rainbow option IV
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5.1.2. Comparison Between Different Signatures. We 
further compare the performance of the Itô and the Strato-
novich signatures in learning option payoffs. Given a dis-
crete time series of an underlying asset {Xtj}

1;000
j�1 with 

tj � j=1, 000, we consider three numerical methods to cal-
culate the signatures, summarized in Table 1. The first 

two are numerical methods for computing the Itô and 
Stratonovich integrals, respectively.17 The third method, 
called Linear, linearly interpolates the time series and 
then calculates the signature using Riemann/Lebesgue 
integrals, which is widely adopted in practice (Lyons and 
McLeod 2022).

Figure 6. (Color online) Lasso Paths with Signatures as Predictors 

(a) Call option (b) Put option

(c) Asian option (d) Lookback option

(e) Rainbow option I (f) Rainbow option II

(g) Rainbow option III (h) Rainbow option IV
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We simulate two different types of processes for the 
underlying asset: a one-dimensional standard Brownian 
motion and a one-dimensional standard OU process 
with mean-reverting parameter κ�� 1. As an example, 
we consider the payoff max(XT, 0) with time to 
maturity T � 1. Similar to the settings in Section 
5.1.1, the training set for the Lasso regression con-
sists of 200 simulated paths, and the test set con-
sists of 100 simulated paths. Each experiment is 
repeated 200 times, and the average out-of-sample 
R2 is shown in Figure 7.18

Results. First, the Itô signature of the Brownian motion 
outperforms its Stratonovich signature in Lasso regres-
sion. Second, the Stratonovich signature of the OU pro-
cess outperforms its Itô signature. These findings are 
consistent with our theoretical results in Section 3.2 that 
the Itô signature components of a Brownian motion are 
more uncorrelated compared with the Stratonovich signa-
ture, as well as our simulation results in Section 4.3. Third, 
the performance of the Linear method in Table 1 is almost 
identical to the results for the Stratonovich signature, sug-
gesting that for a mean-reverting time series, it may be 
reasonable to use the heuristic of linearly interpolating the 
time series and then calculating the signature using 
Riemann/Lebesgue integrals as in Lyons and McLeod 
(2022). If the underlying time series is closer to the path of 
a Brownian motion, using the Itô signature may lead to 
improved performance compared with current heuristics.

5.2. Option Pricing
The effectiveness of the signature in learning option 
payoffs in the previous section suggests a new way to 
price and hedge options.19 In this section, we follow the 

method proposed by Lyons et al. (2019) to use the signa-
ture to price stock options and interest rate options, 
which are two of the most important and widely traded 
options in the equity and fixed income markets, respec-
tively. In addition, the dynamics of the prices of their 
underlying assets have different statistical properties— 
the former resembles a Brownian motion, whereas the 
latter resembles a mean-reverting process.

5.2.1. Method. We consider a set of m options actively 
traded in the market with different payoffs A1, A2, : : : , 
Am, and their prices are observable (referred to as 
“source options”). Our goal is to determine the prices of 
a different set of n options with payoffs B1, B2, : : : , Bn 
(referred to as “target options”). Both sets of options 
share the same underlying asset with path Xt. Therefore, 
their payoffs, Ai and Bj, are (different) functions of X. 
For simplicity, we assume that they also share the 
same maturity.

To price the target options, we consider the first K 
signature components of the underlying asset, S0(X), S1 
(X), : : : , SK(X). The universal nonlinearity implies that

Ai(X) ≈ ai, 0S0(X) + ai, 1S1(X)+⋯ + ai, KSK(X),
i � 1, 2, : : : , m (18) 

and

Bj(X) ≈ bj, 0S0(X) + bj, 1S1(X)+⋯ +bj, KSK(X),
j � 1, 2, : : : , n: (19) 

The coefficients ai, · and bj, · can be estimated using Lasso 
regression based on data from both sets of options 
because their payoffs Ai(X) and Bj(X) are known given 

Table 1. Methods for Computing Signature for a Discrete Time Series {Xtj}

Method Formula

Itô S(X)i1, : : : , ik , I
tn

�
Pn�1

j�0 S(X)i1, : : : , ik�1, I
tj

(Xik
tj+1
�Xik

tj
)

Stratonovich S(X)i1, : : : , ik , S
tn

�
Pn�1

j�0
1
2(S(X)

i1, : : : , ik�1, S
tj

+ S(X)i1, : : : , ik�1, S
tj+1

)(Xik
tj+1
�Xik

tj
)

Linear Linearly interpolate {Xtj } and compute signature using Riemann/Lebesgue integral

Figure 7. (Color online) Out-of-Sample R2 When Using Different Methods for Computing Signature Given in Table 1

(a) Brownian motion (b) OU process
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underlying paths. Financial assets with identical payoffs 
must have identical prices assuming no arbitrage, thus 
from (18) and (19), we obtain the prices of the options

p(Ai) ≈ ai, 0p(S0) + ai, 1p(S1)+⋯ +ai, Kp(SK),
i � 1, 2, : : : , m (20) 

and

p(Bj) ≈ bj, 0p(S0) + bj, 1p(S1)+⋯ +bj, Kp(SK),
j � 1, 2, : : : , n, (21) 

where p(·) denotes the price of a derivative. Because 
p(Ai) are observable from source options, we can esti-
mate p(S0), : : : , p(SK) using (20) and then predict p(Bj)

for target options using (21).
We point out that this method is interpretable because 

the signature linearizes the problem of feature selection. 
In particular, p(S0), p(S1), : : : , p(SK) can be understood as 
the prices of K latent derivatives whose payoff functions 
are given by the first K signature components of the 
underlying asset, S0, S1, : : : , SK. This is analogous to the 
Arrow–Debreu state prices of the arbitrage pricing the-
ory of Ross (1976), and therefore we refer to these latent 
derivatives as “signature derivatives.”

Based on this framework, we summarize the proce-
dure for estimating p(Bj) in the following steps. 

i. Simulate N paths of X: X1, X2, : : : , XN;
ii. Calculate the payoffs of source options Ai(X1), 

Ai(X2), : : : , Ai(XN) for i � 1, 2, : : : , m, and target options 
Bj(X1), Bj(X2), : : : , Bj(XN) for j � 1, 2, : : : , n;

iii. Calculate the corresponding signature Sk(X1), 
Sk(X2), : : : , Sk(XN) for k � 0, 1, : : : , K;

iv. For each i or j, estimate ai, · and bj, · using Lasso 
regression based on (18) and (19), respectively, where 
the predictors are Sk(X1), Sk(X2), : : : , Sk(XN) for k � 0, 1, 
: : : , K, the dependent variables are Ai(X1), : : : , Ai(XN) or 
Bj(X1), : : : , Bj(XN), and the regression is performed with 
N samples;

v. Estimate the prices of signature derivatives p(S0), 
p(S1), : : : , p(SK) using ordinary least squares based on 
(20), where the predictors are ai, ·, the dependent vari-
ables are p(Ai), and the estimation uses m samples; and

vi. For each j, calculate the price of the target option 
p(Bj) using (21) directly.

5.2.2. Stock Options. Following the Black–Scholes– 
Merton framework (Black and Scholes 1973, Merton 
1973), we assume that the underlying asset X follows a 
geometric Brownian motion in the risk-neutral world 
with initial price 100, risk-free rate 2%, dividend yield 
0%, and volatility 20%. The source options are vanilla 
European calls and puts with strikes at 90, 92, 94, : : : , 110 
(m � 22), priced by the Black–Scholes–Merton formula. 
The target options are vanilla European calls and puts 
with strikes at 91,93, 95, : : : , 109 (n � 20), and their true 
prices are determined using the Black–Scholes–Merton 
formula. The time to maturity for all these options is set 
to be 2.5 years.

The simulation is conducted as follows. We simulate 
N � 1,000 paths for the underlying asset, and the step 
size for simulating the underlying path is 1/252 (one 
trading day). For each Lasso regression, signature com-
ponents with orders up to four are used as predictors (K 
� 4), and the penalization parameter is determined 
using fivefold cross-validation.

The experiment is repeated 100 times, and the estima-
tion error is computed for each experiment. The relative 
error is measured using the average of | p̂(Bj)�

p(Bj) |=p(Bj) across all target options, where p̂(Bj) and 
p(Bj) are the estimated price and true price of Bj, 
respectively.

Results. Using signature with Lasso regression pro-
vides an excellent fit for the prices of stock options. 
Figure 8 shows the true prices and the estimated prices 
of the target options for a randomly chosen experiment 
out of 100, showing that the estimation errors are small 
for both the Itô and Stratonovich signatures.

Figure 8. (Color online) Estimated Prices vs. True Prices for Stock Options 

(a) Itô signature (b) Stratonovich signature
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In addition, the estimation error of stock option prices 
when using the Itô signature is lower compared with 
using the Stratonovich signature, consistent with our 
results in Section 4.3. Figure 9 shows the average rela-
tive errors for the Itô and the Stratonovich signatures 
across the 100 experiments. The x axis represents the 
moneyness (the strike price of the option divided by the 
initial asset price) of the target options, and the y axis is 
the average relative error. Note that the estimation error 
of the Itô signature is lower because the underlying 
price process resembles a Brownian motion.

5.2.3. Interest Rate Options. We now turn to interest 
rate options, whose underlying assets are commonly 
modeled using mean-reverting processes. In particular, 
consider the interest rate processes {rt}t≥0 by the classi-
cal Vasicek model (Vasicek 1977) in the risk-neutral 
world20:

drt � γ(r � rt)dt+ σdWt, 

with initial rate r0 � 3%, long-term average interest rate 
r � 3%, mean-reverting intensity γ � 0:1, volatility 
σ � 2%, and Wt a standard Brownian motion. The 
source options are interest rate caplets and floorlets 
with strikes rstrike � 2:50%, 2:60%, : : : , 3:40%, 3:50% (m �
22), and their prices p(Ai) are determined using explicit 

formulas for caplets and floorlets under the Hull–White 
model (Veronesi 2010). The target options are interest 
rate caplets and floorlets with strikes rstrike � 2:55%, 
2:65%, : : : , 3:35%, 3:45% (n � 20). The payoffs for caplets 
and floorlets are max(r(0:5, 1)� rstrike, 0) and max(rstrike 
� r(0:5, 1), 0), respectively, where r(0:5, 1) is the 0.5-year 
interest rate at time 0.5. Assume that each of these 
instruments has a notional value of $100 and a maturity 
of 0.5 years. Other simulation setups are the same as in 
Section 5.2.2, and the experiment is repeated 100 times.

Results. Similar to the case of stock options, using sig-
natures with Lasso regression provides an excellent fit 
for the prices of interest rate options. Figure 10 shows 
the actual and estimated prices of the target options for 
a randomly chosen experiment out of 100. The actual 
prices are determined using explicit formulas for caplets 
and floorlets under the Hull–White model. The prices 
estimated using both the Itô and Stratonovich signa-
tures closely align with the actual prices.

Furthermore, in contrast to the case of stock options, 
the estimation error of interest rate option prices when 
using the Itô signature is higher compared with the Stra-
tonovich signature, as shown in Figure 11. This is also 
consistent with our results in Section 4.3.

Overall, our results demonstrate that the Lasso regres-
sion with signature is effective in learning nonlinear 

Figure 9. (Color online) Estimation Errors for Different Target Stock Options 

(a) Call options (b) Put options

Figure 10. (Color online) Estimated Prices vs. True Prices for Interest Rate Options 

(a) Itô signature (b) Stratonovich signature
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payoff functions. In addition, the statistical properties of 
different types of signatures suggest that the Itô signature 
is more appropriate if the underlying asset resembles a 
Brownian motion, and the Stratonovich signature is better 
if the underlying asset resembles a mean-reverting 
process.

6. Conclusion
This paper studies the statistical consistency of Lasso 
regression with signatures. We first establish a probabi-
listic uniqueness of the universal nonlinearity, which 
implies that any feature selection procedure needs to 
recover this unique linear combination of signature to 
achieve good predictive performance.

We find that consistency is highly dependent on the 
definition of the signature, the characteristics of the 
underlying processes, and the correlation between 
different dimensions of the underlying process. In par-
ticular, the Itô signature performs better when the 
underlying process is closer to the Brownian motion 
and has weaker interdimensional correlations, whereas 
the Stratonovich signature performs better when the 
process is sufficiently mean reverting.

The signature method offers an attractive interpretable 
framework for machine learning and pattern recognition. 
In fact, the first two orders of signature components corre-
spond to the Lévy area of sample paths (Chevyrev and 
Kormilitzin 2016, Levin et al. 2016). In addition, the fact 
that the target variable can be represented as a linear func-
tion of signature components allows for interpretability 
with respect to the underlying features, and we offer an 
example in the context of option pricing (Section 5.2).

In general, these results highlight the importance of 
choosing the appropriate signature for different under-
lying data, in terms of both learning the right coeffi-
cients for interpretation and achieving predictive 
performance.

Our findings also call for further studies on the statisti-
cal properties of the signature before its potential in 

machine learning can be fully realized. First, in addition 
to signature, logsignature is also a widely used transform 
of the path of a stochastic process, which has been shown 
empirically to improve the training efficiency with sim-
pler and less redundant information of the path (Morrill 
et al. 2020a, 2021). However, logsignature does not enjoy 
universal nonlinearity (Morrill et al. 2020a, Lyons and 
McLeod 2022), which implies that there is no theoretical 
basis for using a linear combination of logsignature to 
approximate a nonlinear function. Therefore, we choose 
to focus on signature in this study and defer the statistical 
properties of logsignature to future work.

Second, our results highlight the differences in the 
statistical performance of Itô and Stratonovich signa-
tures under different probabilistic models of the under-
lying path. This raises a natural question: Is it possible to 
construct an intermediate signature transform between 
Itô and Stratonovich signatures? The Itô and Stratono-
vich integrals are defined using the left endpoints and 
midpoints of partition subintervals, respectively. There-
fore, one may also consider a class of other stochastic 
integrals using other points within the subintervals 
(Karatzas and Shreve 1998). The location of these points 
may serve as a tuning parameter, which can be selected 
in practice using techniques such as cross-validation.21

This approach may balance the statistical advantages of 
Itô and Stratonovich signatures. However, further 
investigation is needed to determine whether the signa-
tures defined by these new types of integrals satisfy uni-
versal nonlinearity.

Finally, the theoretical analysis in this study focuses 
on the statistical consistency of the parameters of each 
signature component with respect to the number of 
sample paths, using signatures computed from continu-
ous paths. In practice, the computation of each signature 
component relies on a discrete sample of the continuous 
path, which may introduce additional errors. The impli-
cations of this discretization on the statistical perfor-
mance of signature are left for future study.

Figure 11. (Color online) Estimation Errors for Different Target Interest Rate Options 

(a) Call options (b) Put options
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Endnotes
1 Other examples include handwriting recognition (Yang et al. 
2016b, c; Wilson-Nunn et al. 2018; Kidger et al. 2020; Ibrahim and 
Lyons 2022) and action recognition (Yang et al. 2016a, Li et al. 2017, 
Fermanian 2021, Lee et al. 2022, Yang et al. 2022, Cheng et al. 2024).
2 Király and Oberhauser (2019) explore the statistical properties of 
signature in the context of kernel learning for paths, whereas Mor-
rill et al. (2020a) summarize the statistical characteristic that signa-
ture can be regarded as an analog of the moment-generating 
function for time series.
3 Examples include Lyons (2014), Chevyrev and Kormilitzin (2016), 
Levin et al. (2016), Moore et al. (2019), Sugiura and Hosoda (2020), 
Lemercier et al. (2021), Sugiura and Kouketsu (2021), Lyons and 
McLeod (2022), Bleistein et al. (2023), Cuchiero et al. (2023), and 
Lemahieu et al. (2023).
4 In this paper, we mainly consider Xt as a continuous-time process 
for the neatness of our theoretical analysis. However, our simula-
tions and numerical applications in Sections 4 and 5 demonstrate 
that our theoretical results are also applicable to discrete time series.
5 Signature also enjoys several other nice probabilistic properties 
under mild conditions. First, all expected signature components of 
a stochastic process characterize the distribution of the process 
(Chevyrev and Lyons 2016, Chevyrev and Oberhauser 2022). Sec-
ond, the signature of a process uniquely determines the path of the 
underlying process up to a tree-like equivalence (Hambly and 
Lyons 2010, Le Jan and Qian 2013, Boedihardjo et al. 2014).
6 See Online Appendix A for details of the time augmentation.
7 We perform this standardization for two reasons. First, the Lasso 
estimator is sensitive to the magnitudes of the predictors (Hastie 
et al. 2009) and the magnitudes of different orders of signature com-
ponents are different (Lyons et al. 2007); therefore, standardization 
is necessary to ensure that the coefficients of different orders of sig-
nature are on the same scale and can be compared directly. Second, 
the sample covariance matrix is now equivalent to the sample corre-
lation matrix, allowing us to focus on the correlation structure of 
the signature components in the subsequent analysis.
8 In this paper, in line with Zhao and Yu (2006), all covariances and 
correlation coefficients are defined to be uncentered. Specifically, 
for random variables X and Y, we define their covariance as E[XY], 

and their correlation coefficient as E[XY]=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[X2]E[Y2]

p
. One can 

easily extend our results to the centered case.
9 This uniqueness is only for a fixed value of K. In fact, if La and Lb 
are linear combinations of signature components with orders trun-
cated to K and K + 1, respectively, the true function f could always 
be better approximated by Lb.
10 For the Stratonovich signature of a d-dimensional Brownian 
motion, Ψm, n is given by Proposition B.1 in Online Appendix B.
11 This statement aligns with the convention of the literature of 
high-dimensional statistics; see, for example, Wainwright (2009), 
Ravikumar et al. (2011), and Vershynin (2018).
12 Propositions 3 and 4 follow directly from taking partial deriva-
tives with respect to various parameters, and we therefore omit 
their proofs.
13 Online Appendix D provides technical details, computational 
cost, more numerical experiments, and robustness checks for the 
simulations conducted in this section.
14 The choice of d � 2 is consistent with the simulation setup com-
monly used in the literature on signatures; see, for example, Che-
vyrev and Kormilitzin (2016).
15 As a robustness check, we have also conducted experiments for 
K ∈ {3, 4, 5, 6, 7, 8, 9, 10} if d � 1 and K ∈ {3, 4, 5, 6, 7} if d � 2. The 
results are similar to the case of K � 6.
16 For rainbow options with two-dimensional underlying price pro-
cesses, due to their large number of predictors in the Lasso regres-
sion, we only show the seven predictors with the largest estimated 
coefficients.
17 Online Appendix D provides technical details for the schemes of 
numerically computing both integrals.
18 We omit the values of in-sample R2 as they are very close to the 
values of out-of-sample R2.
19 For example, Arribas (2018) and Lyons et al. (2019) price options 
using securities whose payoffs are signature. Lyons et al. (2020) use 
the signature transform to perform option hedging. Bayraktar et al. 
(2024) propose a deep learning framework to price options using 
signature.
20 This is also known as a special case of the Hull–White model 
(Hull and White 1990); see, for example, Veronesi (2010).
21 Specifically, given a tuning parameter τ ∈ [0, 1], one may define 
the stochastic integral 

R T
0 AtdBt as the limit of 

Pn�1
j�0 (τ ·Atj + (1� τ)

·Atj+1 )(Btj+1 �Btj ) with 0 � t0 < t1 < : : : < tn � T as a partition of [0, T]. 
This reduces to the Itô integral and Stratonovich integral when τ��
1 and τ � 0:5, respectively (Karatzas and Shreve 1998). The tuning 
parameter τ�can be chosen through model selection techniques such 
as cross-validation.
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Lyons T, Caruana M, Lévy T (2007) Differential Equations Driven by 
Rough Paths (Springer, New York).

Lyons T, Nejad S, Arribas IP (2019) Numerical method for model- 
free pricing of exotic derivatives in discrete time using rough 
path signatures. Appl. Math. Finance 26(6):583–597.

Lyons T, Nejad S, Arribas IP (2020) Non-parametric pricing and 
hedging of exotic derivatives. Appl. Math. Finance 27(6):457–494.

Lyons T, Ni H, Oberhauser H (2014) A feature set for streams and 
an application to high-frequency financial tick data. Proc. Inter-
nat. Conf. Big Data Sci. Comput. (ACM, New York), 1–8.

Martins EP (1994) Estimating the rate of phenotypic evolution from 
comparative data. Amer. Naturalist 144(2):193–209.

Merton RC (1973) Theory of rational option pricing. Bell J. Econom. 
Management Sci. 4(1):141–183.

Moore P, Lyons T, Gallacher J, Initiative ADN (2019) Using path sig-
natures to predict a diagnosis of Alzheimer’s disease. PLoS One 
14(9):e0222212.
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