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A B S T R A C T

We explore a broad range of high-frequency liquidity measures for the Chinese stock market,
based on a comprehensive tick-level dataset for stocks on the Shenzhen Stock Exchange (SZSE)
with approximately 46.64 billion events in 2019–2021. We integrate the raw event-level data
into a granular and continuous limit order book for each stock for the three years. We
summarize their liquidity levels and key distributional properties. Hypothesis tests show that
order interarrival times follow Weibull—not exponential—distributions, implying that Poisson
flow is not an appropriate model for order flow in the Chinese stock market. We analyze
the intraday and cross-sectional patterns of liquidity, and find novel intraday periodicities in
liquidity at whole-minute frequencies such as 1-minute, 5-minute, and 10-minute. Finally, we
propose the aggressive–passive imbalance (API), analogous to the order flow imbalance of Cont,
Kukanov, and Stoikov (2014), and develop an order-based model of the change in bid–ask
spread that sheds light on the universal mechanism of spread formation with respect to order
flows. To the best of our knowledge, this is by far the most comprehensive study of market
liquidity for the Chinese stock market in the literature.

1. Introduction

The role of market liquidity in empirical finance has grown rapidly over the last decade, influencing studies in microstructure,
asset pricing, market efficiency, and corporate finance. While it has long been acknowledged that market liquidity has an impact
on asset prices and risk management, questions remain about its measurements, determinants, and time-series and cross-sectional
properties (Chaieb et al., 2021). The literature on market liquidity faces its greatest challenges in non-US markets because global
intraday data is less widely available compared to the US despite its exponential growth in recent years (Fong et al., 2017).
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Among international markets, the Chinese financial market is of particular importance not only because of its growing size,
but also of its increasing centrality in the global financial system (Billio et al., 2022). As of 2020, the total value of China’s stock
market has climbed to a record high of more than USD 12.2 trillion, making it the second-largest in the world after that of the US.1
Moreover, recent empirical evidence shows that the world has started to move from a unipolar to a multipolar financial system in
which China plays an increasingly central role (McKibbin and Fernando, 2021; Billio et al., 2022).

The Chinese stock market has several unique features. First, each stock in the Chinese market is traded only on one exchange and
here are no dark pools. Second, unlike developed markets that are dominated by institutional investors, the Chinese stock market
s dominated by retail investors (Li and Wang, 2010), and there is a 1.5-hour lunch break in each trading day. Third, the degree
f automated trading in the Chinese market, though has increased in recent years, is still relatively low compared to developed
arkets such as the US, which is partly due to the tightened regulations that were introduced after the 2015 Chinese stock market

rash. These factors together make research on liquidity and market microstructure in China both interesting and challenging.
In this article, we explore the measurements, patterns, and determinants of high-frequency liquidity empirically using a

comprehensive tick-level dataset from the Chinese stock market. We consider high-frequency liquidity measures widely used in
he literature, including measures based on trading costs (such as bid–ask spread and weighted spread), execution efficiency (such
s order interarrival time, order lifetime, and order execution ratio), and price impact (such as Kyle’s Lambda (Kyle, 1985), and the

price impact regression of Glosten and Harris (1988)). We document their liquidity levels, analyze their distributional properties
s well as intraday and cross-sectional patterns, and provide a model that explains the formation mechanism of liquidity based on
rder flows. To the best of our knowledge, this is by far the most comprehensive study of liquidity for the Chinese stock market in
he literature.

Our dataset is taken from the Shenzhen Stock Exchange Historical Tick Data, which consists of tick-level data for all 1,936 stocks
raded on the Shenzhen Stock Exchange from Jan. 1st, 2019 to Dec. 31st, 2021. It provides all trades, quotes, cancellations, their
imestamp and price information, and market snapshots for the first ten non-empty levels of the book on both sides every three
econds. Overall, we have approximately 1,936 (stocks) × 730 (trading days) × 33,000 (average number of events per stock per
ay) = 46.64 billion events. Through meticulous integration of the raw event-level data, we reconstruct the order book at the
imestamp of each event, the highest possible time resolution. The reconstructed order book contains the sequences of all orders,

trades, and detailed market snapshots, including the price and size at each level of the limit order book. This comprehensive dataset
nables us to compare a variety of widely used liquidity measures in the literature, analyze their distributional, time-series, and
ross-sectional patterns, and explore their determinants. To study cross-sectional patterns, we also join this dataset with several
tandard company-level characteristics such as each stock’s market capitalization, institutional versus retail ownership, and whether
he stock is an index constituent.

First, we find that the proportional effective spread in the Chinese market is consistently lower than that in the US market, a
potential result of centralized trading for all stocks in the Chinese market. In addition, we propose a methodology to estimate the
distribution of the censored order lifetime data and find that order lifetimes follow the power-law, and that order interarrival times
ollow Weibull—not exponential—distributions, empirically confirming the intuition proposed by Abergel et al. (2016). This implies

that the Poisson flow is not an appropriate model for order flow in the Chinese A-share market.
Second, we explore the intraday patterns of liquidity measures. In contrast to the well-known U-shaped pattern of trading volume

and liquidity in developed markets, we observe a W-shaped pattern in our data because the Chinese stock market is closed for a
.5-hour lunch break around noon. In addition, the W-shape varies among liquidity measures such as the bid–ask spread and Kyle’s
ambda, which highlights that different measures capture different aspects of market liquidity. Furthermore, we document novel
nd subtle intraday periodicities in liquidity by estimating spectral density functions for detrended intraday liquidity measures.
he periodic patterns at high frequencies are consistent over three years, with lower-frequency periodicities more pronounced in
020. This is analogous to the price clustering effect such as the whole-dollar effect (Niederhoffer, 1965; Harris, 1991) and the

stock-pinning effect on option strikes (Ni et al., 2005; Avellaneda et al., 2012). We find a clustering effect for liquidity along the
time-series dimension rather than the price dimension.

Third, we conducted a detailed analysis and comparison of several cross-sectional patterns of liquidity measures across the three
years in 2019–2021. Taking the Kyle’s Lambda as an example, liquidity measures tend to be higher for stocks with higher market
capitalization, higher prices, more institutional ownership, that are index constituents,2 and not trading under the special treatment
(ST) status.3 Kyle’s Lambdas generally decrease from 2019 to 2021, which reflects an overall improvement in liquidity during this
period. Interestingly, ‘‘Work-from-home’’ stocks have the lowest Kyle’s Lambdas in 2020 among the three years, implying that these
stocks have particularly high liquidity during the COVID-19 period. These empirical patterns highlight differences in liquidity with
respect to both the characteristics of the underlying assets and different time periods including the COVID-19 pandemic.

Finally, to understand what determines liquidity, we develop an order-based model of the bid–ask spread—arguably the simplest
ut most commonly used high-frequency liquidity measure for both academics and practitioners. We define the aggressive–passive
mbalance (API)—similar in spirit to the order flow imbalance of Cont et al. (2014)—which measures the imbalance between
ggressive orders and passive orders. We show that, over short time intervals, while OFI predicts changes in prices, changes in the

1 Retrieved from World Bank in March 2022: https://data.worldbank.org.
2 For example, stocks that are part of the CSI 300 Index, which consists of 300 A-share stocks listed on the Shanghai or Shenzhen Stock Exchange.
3 The Shanghai and Shenzhen Stock Exchanges implement a stock listing rule that gives special treatment (ST) or delisting risk warning to the stocks of the

listed companies with abnormal financial and nonfinancial conditions, in order to indicate the risks of the stock to investors.
2
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bid–ask spread are mainly driven by API. The significance of API as a determinant of the bid–ask spread is robust across different
stocks and over our entire sample period. This result highlights a universal mechanism of spread formation with respect to order
flows. In addition, we estimate the impact of API on the direction and magnitude of changes in spread separately and provide a
cross-sectional analysis of the degree of API’s impact with respect to several company characteristics, including stock price, market
capitalization, and whether the company is primarily held by institutional or retail investors. API characterizes the dynamic of
spread from the perspective of trading urgency, which provides an alternative to the inventory-based perspective offered by studies
uch as Grossman and Miller (1988) and Bogousslavsky and Collin-Dufresne (2023).

The remainder of the paper is organized as follows. We provide a brief review of related literature in Section 2. Section 3
describes our data. Section 4 summarizes the measurements of high-frequency market liquidity. Section 5 explores intraday and
cross-sectional patterns in market liquidity. Section 6 develops the API as an important determinant of market liquidity with respect
to order flows. Section 7 concludes and we provide additional technical details in Appendix.

2. Literature review

Liquidity is one of the most important topics in the study of market microstructure (Madhavan, 2000), with important
implications both from a theoretical perspective such as price formation (Glosten and Milgrom, 1985; Amihud and Mendelson, 1986;
Datar et al., 1998) and a practical perspective such as the optimal execution of large orders (Bertsimas and Lo, 1998; Almgren and

hriss, 2001).
There exists a wide range of liquidity definitions and their corresponding measurements. Foucault et al. (2013) define liquidity

as ‘‘the degree to which an order can be executed within a short time frame at a price close to the security’s consensus value’’.
According to this definition, liquidity should measure two aspects of trading: (1) whether executing an order is timely, and (2)
whether the execution price is close enough to the fair value. Examples of high-frequency liquidity measures include bid–ask spread
as used in Amihud and Mendelson (1986) and Hollifield et al. (2017), order book depth and price impact as used in Biais et al.
(1995) and Adrian et al. (2017), and inventory cost for market makers as used in O’Hara and Zhou (2021). There is also a large
literature on using low-frequency (such as daily) data to estimate high-frequency liquidity measures across equity and bond markets,
oth in the US and internationally.4

One specific dimension of liquidity is price impact, also known as ‘‘depth’’ or ‘‘resiliency’’ in the language of the foundational
ork by Kyle (1985). Since then, several models of market impact have been proposed, including the price impact regression
f Glosten and Harris (1988) and the order flow imbalance of Cont et al. (2014). There is also empirical literature estimating
yle’s Lambda using high-frequency data (Hasbrouck, 2009; Goyenko et al., 2009; Khandani and Lo, 2011). In addition, the price

mpact of market orders has been investigated by Lillo et al. (2003) and Farmer et al. (2004), and the significant impact of limit
rders and cancellations has been documented by Eisler et al. (2012) and Hautsch and Huang (2012).5

The patterns of liquidity have been studied across stocks and bonds, and over different time periods, though primarily based on
data in the developed markets. Chordia et al. (2000, 2001) and Moshirian et al. (2017) study market- and industry-wide commonality
n liquidity. Cenesizoglu and Grass (2018) disentangle bid- and ask-side liquidity using 11 years of comprehensive New York Stock

Exchange limit order book data to document several empirical facts. Lee and Chung (2022) show that hidden liquidity on lit venues
of the US stock market has significant effects on various measures of market liquidity. Other studies look at how market liquidity
behaves in crisis periods. For example, Spatt (2010) and Adrian et al. (2017) study market liquidity during and after the financial
risis of 2007–2008; Kirilenko et al. (2017) study intraday market intermediation and liquidity during the Flash Crash; Chung and
huwonganant (2023) and O’Hara and Zhou (2021) focus on the stock market and corporate bond market during the COVID-19

crisis, respectively.
The relationship between liquidity and asset returns has been extensively studied (Amihud and Mendelson, 1986; Acharya

and Pedersen, 2005; Chen et al., 2021). It is well-known both theoretically and empirically that liquidity premiums exist for
stocks (Amihud and Mendelson, 1986; Datar et al., 1998; Pástor and Stambaugh, 2003), bonds (Lin et al., 2011), and in international
apital markets (Chaieb et al., 2021). In addition, the impact of algorithmic and high-frequency trading on liquidity has also been

explored.6

The literature on liquidity for the Chinese stock market include Narayan and Zheng (2010, 2011), and Ma et al. (2018), who
ave studied how liquidity interacts with stock returns. In these studies, liquidity is usually proxied by one or a few measures. Our
rticle contributes to this literature by providing a comprehensive analysis of high-frequency liquidity in the Chinese stock market,
ts similarities and differences to the US market, and what mechanism determines the formation of bid–ask spread with respect to
rder flows.

4 See, for example, Roll (1984), Lesmond et al. (1999), Hasbrouck (2009), Goyenko et al. (2009), Corwin and Schultz (2012), Schestag et al. (2016), Fong
et al. (2017), and Abdi and Ranaldo (2017).

5 Additional literature on price impact models include Madhavan et al. (1997), Bouchaud et al. (2003), Hasbrouck (2007), Bouchaud et al. (2009), and Mertens
et al. (2022).

6 See, for example, Hendershott et al. (2011), Clark-Joseph et al. (2017), Upson and Van Ness (2017), Chung and Chuwonganant (2018), Yao and Ye (2018),
Roşu (2020), Baldauf and Mollner (2020), Bongaerts and Van Achter (2021), and Li et al. (2021).
3
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Table 1
Samples of raw data for Ping An Bank (stock code: 000001) on Jan. 2nd, 2020.

snapshot order

TradeDate 20200102 tradedate 20200102
OrigTime 20200102093500000 TransactTime 20200102093144900

SecurityID 000001 ApplSeqNum 939273
OfferPX1 16.81 SecurityID 000001

BidPX1 16.80 Price 16.74
OfferSize1 700 OrderQty 2500

BidSize1 297100 Side 1 (Bid)
⋯ ⋯ OrderType 2 (Limit order)

OfferPX10 16.90
BidPX10 16.71

OfferSize10 436640
BidSize10 29900

trade – execute trade – cancel

tradedate 20200102 tradedate 20200102
tradetime 20200102093337000 tradetime 20200102093337100

ApplSeqNum 1316723 ApplSeqNum 1316934
SecurityID 000001 SecurityID 000001

BidApplSeqNum 1303835 BidApplSeqNum 1302992
OfferApplSeqNum 1316722 OfferApplSeqNum –

Price 16.78 Price –
TradeQty 7400 TradeQty 100
ExecType F (done) ExecType 4 (withdrawal)

3. Data

The complexity of high-frequency transaction data and its huge volume warrants a detailed description of the data used in this
tudy. Sections 3.1 and 3.2 introduce the raw dataset and the processed data after order book reconstruction, respectively. Based on

the processed data, we briefly show several stylized facts of the limit order book on sample stocks in the Shenzhen Stock Exchange
n Appendix F.1 of the Online Supplementary Material.

3.1. Raw data

Our raw data is obtained from the Shenzhen Stock Exchange (SZSE) Historical Tick Data,7 which contains all stocks traded in the
Shenzhen Stock Exchange8 (hereinafter, the Exchange) for 730 trading days from Jan. 1st, 2019 to Dec. 31st, 2021. Specifically, we
use three files in the SZSE Historical Tick Data:

(a) snapshot file. This file comes from snap_level_spot in the database and records the prices and quantities for the first
ten nonempty levels on both sides of the limit order book every three seconds;

(b) order file. This file comes from hq_order_spot in the database and contains all information about submitted orders,
including time, price, quantity, order type, and whether it is a buy or a sell order;

(c) trade file. This file comes from hq_trade_spot in the database and contains all information about the executions and
cancellations in the market. For each execution event, the file records the time, price, quantity, and both the buy and sell
orders involved in this execution. For each cancellation event, the canceled quantity of the order is recorded.

Table 1 provides several segments of the raw data for Ping An Bank on Jan. 2nd, 2020 as an example. The snapshot sample
contains a snapshot of the top ten nonempty levels of the limit order book at 9:35:00.000. It shows the first ten bid prices (BidPX1–
BidPX10) and ask prices (OfferPX1–OfferPX10), as well as the order quantities remaining on the bid side (BidSize1–BidSize10) and
the ask side (OfferSize1–OfferSize10) at these respective prices. The order sample is recorded when a buy limit order is submitted
at the price of RMB 16.74 with 2,500 shares at 9:31:44.900, and the exchange attached a unique ID 939273 (see ApplSeqNum)
to this order. As for the trade file, there are certain differences between executions and cancellations. The ‘‘execute’’ sample
demonstrates an execution where the buy order with ID 1303835 and the sell order with ID 1316772 are matched at RMB 16.78

ith a size of 7,400 at 9:33:37.000. The ‘‘cancel’’ sample demonstrates that the buy order with ID 1302992 is canceled with size
00 at 9:33:37.100, and there are no sell orders and prices involved in this cancellation event.

The comprehensive SZSE Historical Tick Data allows a detailed investigation of all trading activities for stocks listed on the
xchange, thanks to the unique features of the Chinese market that each stock is traded at only one exchange where it is listed,

and there are no dark pools. Therefore, we can use the dataset to reconstruct the complete order book evolution of these stocks and
study their liquidity.

7 See http://www.szse.cn/English/services/dataServices/index.html.
8 Appendix A of the Online Supplementary Material introduces the trading rules for the Shenzhen Stock Exchange.
4
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Table 2
The reconstructed order book of Ping An Bank (stock code: 000001) at 11:00:00 on Jan. 2nd,
2020.

Level Price Quantity Order Queuea

⋮ ⋮ ⋮ ⋮
Ask20 17.10 537100 1000|200|500|500|100|...|800|2000|900|200|4700

⋮ ⋮ ⋮ ⋮
Ask10 17.00 2618876 3000|400|840|500|2000|...|500|1000|1000|1000|300

⋮ ⋮ ⋮ ⋮
Ask2 16.92 112300 700|100|200|1600|100|...|1100|500|1100|1000|500
Ask1 16.91 42500 800|1800|500|3500|700|...|100|800|300|6000|200
Bid1 16.90 5000 3000|2000
Bid2 16.89 8100 2000|300|1600|2700|1000|500

⋮ ⋮ ⋮ ⋮
Bid10 16.81 261600 2000|300|1200|40000|12000|...|80000|800|10000|1800|1200

⋮ ⋮ ⋮ ⋮
Bid20 16.71 63200 2000|1000|400|300|2000|...|100|500|3000|500|300

⋮ ⋮ ⋮ ⋮

a Order queues are displayed by the quantities of the orders in the queue separated with ‘‘|’’.
b Only the part in the box is available in the snapshot file.

Table 3
Information of an order 𝑥 after the reconstruction.

Class Notation Meaning

Order

𝑝𝑥 Quote price of 𝑥
sign(𝑣𝑥) Side of 𝑥
|𝑣𝑥| Quote size of 𝑥
𝑡𝑥 Quote time of 𝑥

Full limit order book
𝑝𝑏𝑖 (𝑡𝑥) Bid 𝑖 price right before 𝑡𝑥
𝑛𝑏𝑖 (𝑡𝑥) Bid 𝑖 size right before 𝑡𝑥

(𝑖 = 1, 2,…)
𝑝𝑎𝑖 (𝑡𝑥) Ask 𝑖 price right before 𝑡𝑥
𝑛𝑎𝑖 (𝑡𝑥) Ask 𝑖 size right before 𝑡𝑥

Event 𝑥 Execution and cancellation events related to 𝑥

3.2. Data after order book reconstruction

The empirical studies in Sections 4–6 require more granular information from the limit order book than the 3-second snapshots
with only ten nonempty levels provided by the snapshot file in the raw data. Hence, we reconstruct the sequence of order arrivals
and trades by re-matching the orders according to the trading rules in the Exchange (Shenzhen Stock Exchange, 2016, 2020), with
the detailed procedures outlined in Appendix C of the Online Supplementary Material. After the reconstruction, the limit order book
is available for all nonempty levels at any time.

Table 2 provides the limit order book after order book reconstruction of Ping An Bank (stock code: 000001) at 11:00:00 on Jan.
nd, 2020, which greatly enriches the original snapshot in the snapshot file. Our reconstructed limit order book contains not

only the prices and quantities, but also the queue positions of all remaining orders at each level, which provides the most granular
level of available information (see definitions of the limit order book in, for example, Harris (2003) and Abergel et al. (2016)). As
 result, we are able to provide the snapshot of the order book right before the submission of each order—and its corresponding
xecution and cancellation events—during the continuous auction. Table 3 summarizes the available information of an example
rder after the reconstruction,9 and these information are recorded in a new file, order_based_data.

4. Measurements of high-frequency market liquidity

Having established a granular view of the limit order book that contains information for all orders at all price levels at any
ime during a trading day, we are ready to measure the high-frequency liquidity in the Chinese stock market and document their
istributions.

According to Foucault et al. (2013), liquidity is the degree to which an order can be executed within a short time frame at a
rice close to the security’s consensus value. To determine whether an order can be executed at a better price, one can measure the

liquidity based on trading cost, and to determine whether an order can be executed within a short time frame, one can measure
the liquidity based on execution efficiency. In addition, price impact plays a crucial role in determining the trading cost of large
orders. Therefore, we consider several liquidity measures grouped into the above three categories. The measures used in this paper
re drawn from recent monographs of market liquidity (Foucault et al., 2013; Abergel et al., 2016) and the annual market quality

reports of SZSE (Shenzhen Stock Exchange, 2021).

9 For the details of the notations used in Table 3 and hereafter, see Appendix B of the Online Supplementary Material.
5
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4.1. Measures based on trading cost

The most intuitive and commonly used measure of the cost of a small trade is the quoted spread.

Definition 1 (Spread (Foucault et al., 2013)). The (quoted) spread at time 𝑡 is defined as the difference between the best ask price
𝑎(𝑡) and the best bid price 𝑏(𝑡) at time 𝑡, i.e.,

𝑆(𝑡) ∶= 𝑎(𝑡) − 𝑏(𝑡).

If this spread is normalized by the midprice 𝑚(𝑡) ∶= (𝑎(𝑡) + 𝑏(𝑡))∕2, the average of best bid price and best ask price, one obtains the
proportional (quoted) spread:

𝑠(𝑡) ∶= 𝑆(𝑡)
𝑚(𝑡)

=
𝑎(𝑡) − 𝑏(𝑡)

𝑚(𝑡)
.

In addition to the quoted spread, which measures the difference between the best bid and ask prices, another important measure
of trading cost is the effective spread. While the quoted spread reflects the cost of trading in an ideal setting where trades occur at
he best bid or ask price, the effective spread captures the actual cost incurred by traders due to market conditions, such as price

improvement or slippage.

Definition 2 (Effective Spread (Foucault et al., 2013)). The effective spread at time 𝑡 is defined as twice the difference between the
mid price 𝑚(𝑡) and the trading price 𝑝(𝑡) at time 𝑡, i.e.,

𝑆eff(𝑡) ∶= 2|𝑝(𝑡) − 𝑚(𝑡)|.

If this spread is normalized by the midprice 𝑚(𝑡), one obtains the proportional effective spread:

𝑠eff(𝑡) ∶= 𝑆eff(𝑡)
𝑚(𝑡)

=
2|𝑝(𝑡) − 𝑚(𝑡)|

𝑚(𝑡)
.

This measure considers the distance between the transaction price and the midprice, thus offering a more realistic assessment of
rading costs experienced by market participants.

The spread on larger orders can be gauged similarly, computing a weighted average bid–ask spread from the quotes posted. For
instance, for the buy and sell limit orders posted at a given point in time, we use the following definition.

Definition 3 (Weighted-average Spread (Foucault et al., 2013)). Denote the average execution price of a buy (sell) market order
as �̄�(𝑡, 𝑞) (�̄�(𝑡, 𝑞)), where a hypothetical trader places a market order at time 𝑡 to buy (sell) 𝑞-RMB worth of the stock. Then, the
weighted-average spread (wavg-spread, for simplicity) with a total stock worth of 𝑞 at time 𝑡 is defined as

𝑆(𝑡, 𝑞) ∶= �̄�(𝑡, 𝑞) − �̄�(𝑡, 𝑞),
and the proportional weighted-average spread (proportional wavg-spread, for simplicity) is

𝑠(𝑡, 𝑞) ∶= 𝑆(𝑡, 𝑞)
𝑚(𝑡)

=
�̄�(𝑡, 𝑞) − �̄�(𝑡, 𝑞)

𝑚(𝑡)
.

It is easy to see that 𝑆(𝑡, 𝑞) and 𝑠(𝑡, 𝑞) are monotonically increasing with respect to 𝑞.

4.2. Measures based on execution efficiency

Here we introduce several measures based on execution efficiency from the perspectives of a single order and the entire market,
respectively.

We begin with a few notations in addition to the order file and trade file introduced in Section 3.1 for each trading day. For
an order 𝑥 recorded in the order file, we denote its order submission time, quote price, and size as 𝑡𝑥, 𝑝𝑥, and 𝑣𝑥, respectively. An
event 𝑒 recorded in the trade file can be either an execution or a cancellation. We denote the event time and the size of 𝑒 as 𝑡𝑒
and 𝑣𝑒, respectively. If 𝑒 is an execution event, we further denote its execution price as 𝑝𝑒.10

From the perspective of a single order, the most direct measure of execution efficiency is the total length of time during which
the order remains on the order book, weighted by the sizes of all trades and cancellations associated with this order.

Definition 4 (Lifetime of an Order (Abergel et al., 2016)). The lifetime of an order 𝑥 is defined as

𝑇 𝑥 ∶=

∑

𝑒∈𝑥 𝑣𝑒𝑡𝑒
𝑣𝑥

− 𝑡𝑥,

where 𝑥 is the collection of events that the order 𝑥 is involved in.

10 For the rigorous definition of these notations, see Appendix B of the Online Supplementary Material.
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In addition, the market is likely to be more liquid if orders arrive more frequently. This leads us to define the interarrival time
between two consecutive orders.

Definition 5 (Interarrival Time (Abergel et al., 2016)). We define the interarrival time between an order 𝑥 and its preceding order as
the difference between 𝑡𝑥 and its preceding order’s submission time, which we denote by 𝛥𝑡𝑥11:

𝛥𝑡𝑥 ∶= 𝑡𝑥 − max
{

𝑡𝑦 ∶ 𝑦 ∈  , 𝑡𝑦 < 𝑡𝑥
}

,

where  is the collection of all submitted orders during the day.

From the aggregate market’s perspective, we can measure the liquidity by the percentage of all submitted orders that are executed
ventually. To do this, we first define several different cases in which an order can be executed. An order 𝑥 is said to be executed

at a single price if #{𝑝𝑒 ∶ 𝑒 ∈ 𝑥
}

= 1. An order 𝑥 is said to be executed at a single time if #{𝑡𝑒 ∶ 𝑒 ∈ 𝑥
}

= 1. An order 𝑥 is said to
be executed at the best price if

{

𝑝𝑒 ∶ 𝑒 ∈ 𝑥
}

=

{

{

𝑎
(

𝑡𝑥
)}

, 𝑥 is a sell order,
{

𝑏
(

𝑡𝑥
)}

, 𝑥 is an buy order,

where 𝑎
(

𝑡𝑥
)

and 𝑏
(

𝑡𝑥
)

are the best ask price and best bid price at time 𝑡𝑥, respectively. We denote by  sp,  st , and bp the collections
f orders executed at a single price, at a single time, and at the best price, respectively.

Now we are ready to define the execution ratio of all orders in a trading day.

Definition 6 (Execution Ratio (Shenzhen Stock Exchange, 2021)). The total execution ratio is defined as

𝑟e = 2 ×
∑

𝑒∈𝑒 𝑣𝑒
∑

𝑥∈ 𝑣𝑥
,

where 𝑒 is the collection of all execution events during the day. In addition, the execution ratio at a single price, at a single time,
nd at the best price is defined as

𝑟sp =
∑

𝑥∈sp 𝑣𝑥
∑

𝑥∈ 𝑣𝑥
, 𝑟st =

∑

𝑥∈st 𝑣𝑥
∑

𝑥∈ 𝑣𝑥
, 𝑟bp =

∑

𝑥∈bp 𝑣𝑥
∑

𝑥∈ 𝑣𝑥
,

respectively.

There is a constant of 2 in the definition of 𝑟e because, for an execution event 𝑒, both the buy and the sell orders involved are
executed. It is easy to verify that all four execution ratios above are indeed between 0 and 1, and that 𝑟e is the largest among the
four execution ratios. Moreover, 𝑟sp ≥ 𝑟bp because an order executed at the best price is also executed at a single price.

4.3. Measures based on price impact

We consider two methods to measure liquidity based on price impact: Kyle’s Lambda, as proposed by Kyle (1985), and the price
mpact regression of Glosten and Harris (1988).

Kyle’s Lambda (Kyle, 1985). In the pioneering work of Kyle (1985), the reciprocal of Kyle’s Lambda can be regarded as a measure
f market depth. Subsequent empirical studies, such as those of Hasbrouck (2009), Goyenko et al. (2009), and Khandani and Lo

(2011), estimate Kyle’s Lambda using high-frequency data and view it as a liquidity measure. We follow Goyenko et al. (2009) who
stimate Kyle’s Lambda (𝜆) using the following regression without intercept:

𝑟𝑛 = 𝜆𝑆𝑛 + 𝜖𝑛, (1)

where for the 𝑛th sampling period, 𝑟𝑛 is the log-return of the stock, 𝑆𝑛 is the signed square-root quantity defined by 𝑆𝑛 =
∑

𝑘 sign(𝑣𝑘𝑛)
√

|𝑣𝑘𝑛|, 𝑣𝑘𝑛 is the signed quantity of the 𝑘th execution in the 𝑛th sampling period, and 𝜖𝑛 is the error term. A lower
estimated 𝜆 indicates better liquidity.

Price impact regression (Glosten and Harris, 1988). Following the work of Roll (1984), many price impact regression models are
proposed to capture the cost of providing liquidity caused by adverse selection, order-processing, and risky inventory holdings. In
these models, price changes are regressed on contemporaneous and lagged measures of order flow, and the estimated coefficients
can be regarded as liquidity measures based on price impact.

The exact specifications of the price impact regression depend on the assumptions for the sources of market illiquidity and the
properties of the order arrival process. Here we follow the price impact regression of Glosten and Harris (1988) which decomposes
the quote spread into the adverse selection cost component and the order-processing cost component. Specifically, the price change

11 We have assumed without loss of generality that two orders are never submitted at exactly the same time. This is mostly true in practice for modern
markets with nanosecond time resolution.
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Table 4
Liquidity measures in the price impact regression model.
Cost Measure Meaning

Order-processing cost
𝛾0 The constant part of order-processing cost
𝛾1 The order-processing cost that varies with the execution quantity

Adverse selection cost
𝜆0 The influence of the execution direction
𝜆1 The influence of the execution quantity

between two consecutive executions is modeled as12:

𝑝𝑛 − 𝑝𝑛−1 = 𝜆0𝑑𝑛 + 𝜆1𝑞𝑛 + 𝛾0(𝑑𝑛 − 𝑑𝑛−1) + 𝛾1(𝑞𝑛 − 𝑞𝑛−1) + 𝜖𝑛, (2)

where 𝑝𝑛, 𝑑𝑛, and 𝑞𝑛 are the price, direction, and quantity of the 𝑛th execution, respectively. In particular, if the execution is bid-
initiated, then 𝑑𝑛 = 1 and 𝑞𝑛 > 0; otherwise 𝑑𝑛 = −1 and 𝑞𝑛 < 0. In regression (2), the parameters 𝛾0, 𝛾1, 𝜆0, and 𝜆1 can be regarded
as liquidity measures based on the price impact, whose interpretations are summarized in Table 4.

In Appendix F of the Online Supplementary Materials, we provide some additional empirical results on the liquidity measures
defined in this section for a few stocks on specific trading dates.

5. Patterns of high-frequency market liquidity

In this section, we explore the intraday and cross-sectional patterns of the liquidity measures outlined in Section 4, for all 1,936
stocks in our sample from 2019 to 2021.

5.1. Intraday patterns

We begin by focusing on the intraday patterns of liquidity measures by aggregating the entire year of data into a one-day time
eries. More specifically, for each stock, we group data based on the following rules:

• For order_based_data, we divide data into 3-second windows where each window contains all orders submitted within
a fixed 3-second period, regardless of their trading dates. For example, we aggregate all orders submitted from 9:30:00 a.m.
to 9:30:03 a.m. for the entire year into one group.

• For snapshot, similarly, we group data based on the time of the snapshot regardless of their trading dates. In other words,
we aggregate all snapshots at 9:30:03 a.m. into one group, and each group contains exactly 730 snapshots (trading days in
2019–2021).

In Section 5.1.1, we study the intraday shape for several trading cost-based liquidity measures including the spread. We use
Fourier analysis to further examine the intraday periodicity for average spread. In Section 5.1.2, we consider order lifetime, an
execution efficiency-based liquidity measure. We use power-law distribution to model censored order lifetimes and propose a new

ethod to estimate its parameter. The intraday pattern of the estimated parameter is also studied. For price impact-based liquidity
measures, we primarily focus on their cross-sectional patterns in Section 5.2.

5.1.1. Intraday shape and periodicity for spread
It is well known that liquidity measures and variables related to trading activity demonstrate U-shaped intraday patterns. For

xample, trading volume is significantly larger after market open and before market close compared to the rest of the day (Admati
and Pfleiderer, 1988).

W-shaped liquidity. To understand intraday patterns for liquidity in the Chinese A-share market, we calculate different intraday
quantiles for six spread measures: spread, proportional spread, 5 millions wavg-spread, 5 millions proportional wavg-spread,
ffective spread, and proportional effective spread as defined in Section 4. Specifically, for each stock, we calculate the cross-date
verage spread in each 3-second window to obtain a time series with 4740 data points. For each 3-second average, we calculate
he cross-sectional 1%, 25%, 50%, 75%, and 90% quantiles for a given spread measure among all stocks. We show results for
pread (Fig. 1(a)), proportional spread (Fig. 1(b)), effective spread (Fig. 1(c)), proportional effective spread (Fig. 1(d)), 5 millions

wavg-spread (Fig. 1(e)), and 5 millions proportional wavg-spread (Fig. 1(f)).
These results suggest a W-shaped pattern rather than the standard U-shaped pattern seen in other markets.13 Taking spread as

an example in Fig. 1(a), each quantile shows a high spread at the beginning of the day, and there exist additional peaks near 11:30
and 13:00. The spread also rises slightly immediately before the market close. These patterns W-shaped patterns are likely a result
of the A-share market being closed for one and a half hours at noon for the lunch break.

12 We give the details for the price impact regression model (2) in Appendix D of the Online Supplementary Material. In addition, the model is closely related
o the quoted spread. In particular, Glosten and Harris (1988) demonstrated that the quoted spread at the time of the 𝑛th execution is

2(𝜆0 + 𝜆1|𝑞𝑛| + 𝛾0 + 𝛾1|𝑞𝑛|),

where 2(𝜆0 + 𝜆1|𝑞𝑛|) and 2(𝛾0 + 𝛾1|𝑞𝑛|) are the adverse selection cost component and the order-processing cost component, respectively.
13 One may also refer to this as a double-U-shaped pattern; see, for example, Tian and Guo (2007).
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Fig. 1. Intraday time-series plot for different quantiles of spread measures across all stocks from 2019 to 2021.

Fig. 2. Cross-sectional average spread over all stocks from market open to lunch break in 2019, 2020, and 2021.

Intraday periodicity. In addition to the W-shaped patterns, we discover more granular intraday periodicities in these spread measures.
Fig. 2 shows the intraday time series of cross-sectional average spread of all stocks in each 3-second window in 2019, 2020, and
2021, as well as a trend estimated by a rolling window average. The time series exhibits spiked periodicity, where the average
spread climbs up to the peak quickly and then slowly decays over time, a phenomenon consistent with observations in Broussard
and Nikiforov (2014). In particular, low-frequency periodicities are more pronounced in 2020.

To quantitatively investigate the intraday periodicity, we estimate the spectral density of detrended time series by the Fourier
transform for sample autocovariances, which is a classical method in time series analysis (Brockwell and Davis, 2009). Specifically,
we first detrend the raw time series using a rolling window of 100 data points (corresponding to 5 minutes in natural time) and then
estimate the autocovariance function for three time intervals separately: 9:30 to 10:00, 10:00 to 11:30, and 13:00 to 14:57. Finally,
we implement Fourier transform on the autocovariance function to estimate the spectral density of the detrended time series.14

14 Estimating the spectral density via the Fourier transform of the autocovariance function assumes that the original time series can be decomposed into the
sum of cosine functions. Though the trigonometric basis functions may not be ideal to capture the asymmetry around spikes in the time series, the Fourier
9
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Fig. 3. Estimated spectral density for detrended time series of average spread during 9:30–10:00 (top panel), 10:00–11:30 (middle panel) and 13:00–14:57
(bottom panel) in 2019, 2020, and 2021.

Because the accuracy of autocovariance function estimation depends on the length of the time series, and the three time intervals
we choose have different lengths, we estimate the autocovariance with different lags for different series:

• 9:30–10:00: time-series length is 600 and the max lag is 200 for the estimated autocovariance function;
• 10:00–11:30: time-series length is 1800 and the max lag is 500 for the estimated autocovariance function;
• 13:00–14:57: time-series length is 2340 and the max lag is 500 for the estimated autocovariance function.

Fig. 3 shows the estimated spectral density function at different frequencies. Overall, the periodic patterns at 1 minute are
consistent across three years, with the spectral densities in 9:30–10:00 and 13:00–14:57 increasing from 2019 to 2021. This implies
that more trading activities occur at the 1-minute frequency.15 Wu et al. (2022) observed similar periodic patterns for trading
volume, and they suggest that these patterns may be attributed to two factors: first, investors’ tendency to execute trades at round
minutes; second, the common practice in algorithmic trading with repeated instructions at fixed time increments. Similar arguments
have also been put forth by Broussard and Nikiforov (2014) and Muravyev and Picard (2022).

More interestingly, Fig. 3 shows more significant periodic patterns at 5- and 10-minute frequencies in 2020. From 9:30 to 10:00,
there exists a strong periodicity at 5 minutes. In 10:00–11:30 and 13:00–14:57, the strongest frequency is at 5-minute, followed by
10-minute.16 A possible explanation for this phenomenon is that retail investors, who typically trade less frequently than institutional
investors, were more active during the COVID-19 pandemic (Ozik et al., 2021).

5.1.2. Censoring and periodicity for order lifetime
We study the intraday pattern for order lifetimes by fitting a power-law distribution for order lifetime data in each 3-second

window. We then study periodicity in order lifetimes through the estimated parameters of the power-law distribution.

Fitting censored order lifetimes. The observed order lifetimes are censored because orders are automatically canceled every day at
market close. The specific censored thresholds are determined by the difference between each order’s submission time and market
close. Thus, simple estimation based on the observed data leads to systematic biases. We propose a novel method below to deal
with this problem.

analysis is still a simple and effective tool for us to rigorously uncover periodicities.
15 We also observe similar patterns of intraday periodicity in both the number of trades and the trading volumes.
16 The estimated spectral density function is robust with regard to how we split the time period. We also observe similar patterns of intraday periodicity in

both the number of trades and the trading volumes.
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Fig. 4. Time-series of fitted parameters, �̂�, of the power-law distribution for order lifetimes of Ping An Bank (stock code: 000001) in 2019, 2020, and 2021.

Following Abergel et al. (2016), we model order lifetimes, 𝑇 𝑥, for an order 𝑥 by a power-law distribution whose probability
density function 𝑓𝑇 𝑥

(𝑦) is given by:

𝑓𝑇 𝑥
(𝑦) = 𝑘𝑦−𝛼 , 𝑦 > 𝑎, (3)

where 𝑎 > 0 is a pre-specified exogenous constant, 𝛼 > 1 is an unknown parameter, and 𝑘 = 𝛼−1
𝑎−𝛼+1

is an auxiliary parameter to
guarantee that (3) is a proper probability density function. We denote the closing time of each day to be 𝑇 . This model assumption
is consistent with our empirical results in Appendix F.2.2. Denote the submission time of order 𝑥 by 𝑡𝑥 (and therefore, with censored
threshold 𝑇 − 𝑡𝑥), then the likelihood function is given by:

𝐿(𝛼) =
∏

𝑎<𝑇 𝑥<𝑇−𝑡𝑥

𝛼 − 1
𝑎−𝛼+1

𝑇
−𝛼
𝑥

∏

𝑇 𝑥=𝑇−𝑡𝑥

𝛼 − 1
𝑎−𝛼+1

(𝑇 − 𝑡𝑥)−𝛼+1

𝛼 − 1 =
∏

𝑎<𝑇 𝑥<𝑇−𝑡𝑥

𝛼 − 1
𝑎−𝛼+1

𝑇
−𝛼
𝑥

∏

𝑇 𝑥=𝑇−𝑡𝑥

𝑇
−𝛼+1
𝑥

𝑎−𝛼+1
, (4)

and the maximum likelihood estimate of 𝛼 under censored data is given by:

�̂� = 1 +
∑

𝑎<𝑇 𝑥<𝑇−𝑡𝑥
1

∑

𝑎<𝑇 𝑥
ln 𝑇 𝑥 −

∑

𝑎<𝑇 𝑥
ln 𝑎

. (5)

Parameter 𝛼 in power-law distribution captures the heaviness of its tail. A larger value of 𝛼 represents thinner tails, which imply
higher levels of execution efficiency in the market. Similarly, our maximum likelihood estimate �̂� in (5) is negatively correlated
with the ‘‘log-weighted average’’ of order lifetimes. In other words, a dataset with shorter observed order lifetimes leads to larger
values of estimated �̂�.

For each stock, we group order lifetime data for all passive orders in the entire year into 3-second windows based on their
submission times. For each group, we perform maximum likelihood estimation according to (5), where 𝑎 is set to be 100 ms.17 Fig. 4
shows the time series of estimated �̂� for Ping An Bank as an example. There are three sharp drops in the estimated �̂� at the morning
market open, the afternoon market open, and the afternoon market close, and �̂� climbs up rapidly in 20 seconds immediately after
the first two drops. This is a result of large order submission volumes at prices far from the market price right after the morning
and the afternoon market open, many of which remain in the order book until the market close. However, after a short period of
price discovery (approximately 20 seconds), most orders are submitted at a price relatively close to the market price, and therefore
market liquidity in terms of execution efficiency quickly recovers to a high level.

Intraday periodicity. Market liquidity based on execution efficiency, as measured by the estimated time series of �̂�, shows similar
intraday periodicity and asymmetry around spikes as spread measures in Section 5.1.1. We apply the same spectral analysis directly
to the estimated �̂� for Ping An Bank. We split the time series into morning and afternoon sessions and estimate their spectral densities
separately, as shown in Fig. 5. In 2019, only weak periodic patterns at 5-, 1- and 0.5-minute frequencies exist, and they become
more significant at 10-, 5-, 1-, and 0.5-minute frequencies in 2020. After that, the periodicities at 1- and 0.5-minute frequencies are
more pronounced in 2021, while the pattern at 10-minute frequency becomes weaker.

Furthermore, we perform the same analysis for all 1,936 stocks in our sample. The two strongest frequencies for each sequence
are summarized in Table 5. In 2020, most stocks have strong 10-minute and 5-minute frequency densities, and the 10-minute
frequency density in the afternoon is stronger than that in the morning. This again confirms the whole-minute temporal effect in
the transactions—and therefore market liquidity—of the Chinese A-share market, which is universal across all individual stocks in
our sample. However, in 2019 and 2021, most stocks exhibit highest frequencies of 5 minutes and 1 minute, respectively, both
higher than in 2020. As discussed in Section 5.1.1, this may be due to the increase in retail trading activity during the COVID-19
pandemic.

17 In fact, different 𝑎 gives rather similar results, and thus we choose 𝑎 = 100 ms for simplicity.
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Fig. 5. Estimated spectral density for detrended time series of average �̂� in the morning (top panel) and afternoon of Ping An Bank (stock code: 000001) in
2019, 2020, and 2021.

Table 5
A breakdown of the first and second strongest frequencies for �̂� across all stocks.

2019 2020 2021

1st num. 2nd num. 1st num. 2nd num. 1st num. 2nd num.

Morning
5 min. 1,261 10 min. 442 10 min. 1,021 5 min. 961 1 min. 1,785 5 min. 944
10 min. 254 2.5 min. 333 5 min. 935 10 min. 838 5 min. 167 0.5 min. 592
Others 566 Others 1,306 Others 125 Others 282 Others 129 Others 545

Afternoon
5 min. 1,097 10 min. 418 10 min. 1,564 5 min. 1,313 1 min. 1,672 0.5 min. 539
10 min. 294 2 min. 300 5 min. 330 10 min. 313 5 min. 131 10 min. 491
Others 690 Others 1,363 Others 187 Others 455 Others 278 Others 1,051

5.2. Cross-sectional patterns

We now turn our attention to cross-sectional patterns of different liquidity measures and investigate whether certain stock and
company characteristics are associated with higher or lower liquidity levels. Appendix E of the Online Supplementary Material
provides details for the categorization of stocks based on stock and company characteristics.

5.2.1. Measures based on trading cost
Fig. 6 shows the cross-sectional patterns of six measures based on trading costs defined in Section 4.1: average spread, average

proportional spread, average effective spread, average proportional effective spread, and average 5 millions proportional wavg-
spread in different categories of stocks. We find that special treatment (ST) stocks have the largest average proportional spread,
average proportional effective spread, and average 5 millions proportional wavg-spread, which indicates a lack of liquidity. By
contrast, constituents of the CSI 300 Index (in SZSE) have very small average proportional spread, average proportional effective
spread, and average 5 millions proportional wavg-spread, which indicates their high liquidity.

Another interesting phenomenon is that stocks with higher sizes (in 2020, and 2021), institutional holdings, and prices have
larger spreads yet smaller proportional spreads. The opposite dependences of the spread and the proportional spread on the stock
prices suggest the existence of a low-price effect in China. In particular, nearly 52% of the stocks in our sample have average close
prices lower than RMB 10 yuan and, therefore, their spreads are usually one tick. These stocks are sometimes referred to as large tick
assets (Dayri and Rosenbaum, 2015), and their spreads remain one tick as the stock prices increase, leading to lower proportional
spreads.

When comparing the results over the three years, we observe that the average effective spread, average proportional effective
spread, and average 5 millions proportional wavg-spread of the constituents of the CSI 300 Index (in SZSE) and the SZI Index are
all decreasing from 2019 to 2021. This trend highlights the improvement in liquidity of these high-quality stocks in the Chinese
market from the perspective of trading costs. Furthermore, all three average proportional spreads for ‘‘Work-from-home’’ stocks in
2020 are the smallest among the three years, reflecting improved liquidity for these stocks during the COVID-19 lockdown period.
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Fig. 6. Cross-sectional patterns of liquidity measures based on the trading cost in different categories of stocks in 2019, 2020, and 2021.
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Fig. 7. Scatter plots of different measures based on execution efficiency versus market value, average volume, and average price for all stocks in 2019 (orange),
2020 (blue), and 2021 (green). Each data point represents one stock. The 𝑦-axis represents a particular liquidity measure, and the 𝑥-axis represents a particular
company characteristic. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Finally, we note that the Chinese market generally exhibits lower average proportional effective spreads compared to the US
market, and the average proportional effective spread of CSI 300 stocks in the Chinese market is converging towards that of S&P
500 stocks in the US market. In particular, the middle panel of Fig. 6(b) shows that the average proportional effective spread across
most stocks in the Chinese market remains consistently below 20 bps each year from 2019 to 2021. This is lower than the level in
the US market, which is documented to be 21 bps during August and September, 2019 (Adams et al., 2024, Table 1) and 25.8 bps
from Jan. 21st to Jun. 11th, 2020 (Ozik et al., 2021, Table 1). In addition, the average proportional effective spreads for CSI 300
components and high price stocks in the Chinese market decrease from 11 bps in 2019 to 8 bps in 2021. In contrast, during the
same period, the average proportional effective spreads for S&P 500 stocks increase from 4 to 6 bps (Chinco and Sammon, 2024,
Fig. C.2). The lower proportional effective spreads in the Chinese market may partly reflect the advantages of its centralized trading
structure.
14
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5.2.2. Measures based on execution efficiency
We examine the cross-sectional patterns for a wide range of liquidity measures based on execution efficiency, as defined in

ection 4.2. For each stock we study the relationship of these measures and three stock characteristics—average market value,
average volume, and average price. Fig. 7(a) shows the scatter plots of average total execution ratio 𝑟e versus three characteristics
of 1,936 stocks in 2019–2021. The same relationships are shown for 𝑟sp, 𝑟st , and 𝑟bp, in Figs. 7(b), 7(c), and 7(d), respectively. Most
tocks have execution ratio 𝑟e between 50% and 75%, execution ratio at a single price 𝑟sp between 45% and 70%, execution ratio

at a single time 𝑟st between 40% and 65%, and execution ratio at the best price 𝑟bp between 40% and 65%.
The average total execution ratio, 𝑟e, the average execution ratio at a single price, 𝑟sp, and the average execution ratio at a single

time, 𝑟st , each have a similar relationship with the average market value and average volume, which is consistent from 2019 to
2021. Overall, larger stocks (with larger market value) and more actively traded stocks (with larger volume) have higher 𝑟e, 𝑟sp,
and 𝑟st . For stocks with market values less than 10 billion RMB, most of their execution ratios 𝑟e are around 65%, while for stocks
with market values larger than 10 billion RMB, their execution ratios lie between 70% and 75%. However, this relationship becomes
less pronounced in the average execution ratio at the best price, 𝑟bp. On the other hand, the relationships between stock price and
these four measures have different patterns. Indeed, as the average stock price increases from near 0, these four execution ratios
also increase, but when the average stock price rises to above RMB 10, these execution ratios begin to decline.

In addition, Fig. 7(e) shows the scatter plots of average order lifetimes as compared to the market value, volume, and average
tock price for all 1,936 stocks. The average order lifetimes of all stocks lie between 200 and 3,000 seconds and most of them

concentrate between 500 and 1,500 seconds. The average order lifetime decreases as the average price increases, which suggests
that stocks with higher prices tend to have better liquidity. Fig. 7(f) presents the same scatter plot for average estimated power-law
parameter �̂� for order lifetime. Nearly all stocks have an average �̂� of between 1.08 and 1.20. Moreover, it suggests that �̂� is positively
orrelated with the average stock price and negatively correlated with the order lifetime, which confirms the intuition mentioned
t the end of Section 5.1.2. Meanwhile, most stocks with an average price greater than RMB 10 have an average �̂� larger than 1.13,

and vice versa.
Finally, Fig. 8 examines the cross-sectional patterns for measures based on execution efficiency in different categories of stocks.

pecial treatment (ST) stocks have the lowest 𝑟e, 𝑟sp, 𝑟st, and 𝑟bp, the highest order lifetime, and the lowest estimated 𝛼, indicating a
ack of liquidity for ST stocks. Meanwhile, constituents of the CSI 300 Index (in SZSE) and the SZI Index have the highest execution

ratio, together with the lowest lifetime and the highest estimated 𝛼, which indicates that they have better liquidity. Furthermore,
Fig. 8(b) show that the price of stocks is negatively related to the order lifetime and positively related to �̂�.

Importantly, Fig. 8 shows that liquidity in the Chinese market generally improves in 2019–2021 from the perspective of execution
efficiency. First, the execution ratios at a single price, at a single time, and at the best price in 2021 are almost all the highest among
he three years. In addition, the order lifetime is getting shorter and �̂� is getting larger from 2019 to 2021 across all classes of stocks,
xcept for ST stocks. These findings collectively indicate an improvement in liquidity in the Chinese market during this period, as
bserved in the liquidity measures based on execution efficiency.

5.2.3. Measures based on price impact
Kyle’s Lambda. We implement the regression (1) for each stock on each trading day from 2019 to 2021 and calculate the average
aily Kyle’s Lambda for each stock in each year.

Fig. 9 summarizes the average daily Kyle’s Lambda for different categories of stocks. First, Kyle’s Lambda of constituents of the
CSI 300 Index (in SZSE) and the SZI Index are smaller than that of stocks in other categories, while special treatment (ST) stocks
ave a larger average Kyle’s Lambda than the average level. This indicates that the constituents of the CSI 300 Index (in SZSE) and
he SZI Index are more liquid, while the ST stocks have less liquidity. Moreover, the average Kyle’s Lambda of large-scale firms
s smaller than that of small-scale firms, which suggests that stocks become more liquid as the scale of a company increases. In
ddition, with the increase of institutional holding, the value of Kyle’s Lambda decreases slightly. This indicates that the liquidity of
tocks with high institutional holdings is slightly better than that of low institutional holdings. Finally, as the stock price increases,
he value of Kyle’s Lambda decreases, which suggests that stocks with a high price are more liquid than those with a low price.18

Fig. 9 also highlights an improvement in market liquidity in the Chinese stock market over the three years, as reflected by a
decline in Kyle’s Lambda. Specifically, Kyle’s Lambdas for all categories, except for ‘‘Work-from-home’’ stocks, decrease steadily
from 2019 to 2021, which suggests a reduced price impact of trades. In addition, Kyle’s Lambda for ‘‘Work-from-home’’ stocks is
the lowest in 2020, likely due to increased attention on these stocks during the COVID-19 period.

Price impact regression. We summarize the annual estimates for each group of stocks, which include the order-processing estimates
𝛾0, 𝛾1) and adverse selection estimates (𝜆0, 𝜆1). Because the estimated parameters depend on the magnitude of stock prices, we
ormalize these estimates either by a stock’s average spread or average price in the following analysis.

First, Fig. 10(a) shows the histogram of 𝛾0, the constant execution cost per share, normalized by the spread of each category of
stocks. The normalized 𝛾0 are clustered around 0.4 in each year of 2019–2021, which indicates that the constant execution cost per
share of each order is slightly less than half of the spread. In this sense, 𝛾0 can be regarded as a liquidity measure similar to the
spread.

18 Overall, these conclusions are consistent with the observations in Shenzhen Stock Exchange (2021, Figure 3 and Figure 8).
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Fig. 8. Cross-sectional patterns of execution efficiency for different categories of stocks in 2019, 2020, and 2021.
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Fig. 9. Average Kyle’s Lambda for different categories of stocks in 2019, 2020, and 2021.

Fig. 10. Estimated coefficients in the price impact regression for all stocks in 2019, 2020, and 2021.
17
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In addition, we analyze the absolute value of 𝛾1 normalized by the stock price. This value represents the ‘‘quantity discount
ate’’ that market makers offer to attract large orders, with a larger ‘‘quantity discount rate’’ indicating poorer liquidity for the
orresponding stock.19 The top panel of Fig. 10(b) shows the ‘‘quantity discount rates’’ for different groups of stocks. The ‘‘quantity

discount rates’’ for constituents of the CSI 300 Index (in SZSE) and the SZI Index are very small, and the ‘‘quantity discount rates’’
decrease significantly as the size of the firm increases. These findings, along with the results from Kyle’s Lambda, suggest that less
liquid stocks tend to have higher ‘‘quantity discount rates’’.

Finally, we examine the adverse selection estimates, 𝜆0 and 𝜆1, normalized by stock price to assess the sensitivity of the consensus
price to order flow information. Larger normalized estimates indicate greater price sensitivity and poorer liquidity. The middle and
bottom panels of Fig. 10(b) show that the normalized 𝜆0 and 𝜆1 are largest in ChiNext, the normalized 𝜆0 for ST stocks is higher
han most categories, and the stocks of smaller firms and higher prices tend to have larger normalized 𝜆0 and 𝜆1. These findings
ndicate that these stocks generally experience higher adverse selection and lower liquidity. However, the normalized 𝜆0 and 𝜆1
alues show a general decrease across the whole market from 2019 to 2021, implying an overall improvement in liquidity.

5.2.4. Common patterns and differences
From the cross-sectional analysis above, we conclude that different boards in the exchange exhibit different levels of liquidity.

Measures based on both trading cost and execution efficiency suggest that the ChiNext is the most liquid among the three boards.
or example, it has the smallest proportional spread, the highest execution ratio, and the shortest order lifetime. However, from the
erspective of market impact, the prices of ChiNext stocks are more sensitive to the information contained in the order flow, which
ndicates their relatively poor liquidity.

Nearly all the measures we used indicate that the special treatment (ST) stocks are the least liquid across all the categories—they
ave the largest proportional spread, the lowest execution ratio, and the longest order lifetime. By contrast, the constituents of the
SI 300 Index (in SZSE) and the SZI Index have smaller proportional spread, higher execution ratio, shorter order lifetime, smaller
yle’s Lambda, and smaller price impact regression estimates as compared to other categories, which demonstrates their superior

iquidity.
Meanwhile, we examine the relationship between certain characteristics of stocks and their liquidity measures. Specifically, stocks

for large-scale firms tend to have lower proportional spread, higher execution ratio, shorter order lifetime, smaller Kyle’s Lambda,
and smaller normalized price impact regression estimators than the stocks for small-scale firms. These results suggest that stocks for
larger-scale firms are more liquid.

In addition, our results reveal that stocks with high institutional holdings have slightly smaller proportional spread, higher
execution ratio, shorter order lifetime, and smaller Kyle’s Lambda, implying better liquidity.

Furthermore, the price of a stock is also related to its liquidity. We observe that high-price stocks have smaller proportional
pread and shorter order lifetimes compared to low-price stocks. This gives us the impression that high-price stocks may have better
iquidity than low-price stocks from the perspective of trading costs and execution efficiency. However, high-price stocks have larger

normalized price impact regression estimates than low-price stocks, which indicates relatively poor liquidity of the high-price stocks
in terms of their market impact.

Finally, we note that market liquidity in the Chinese market improved significantly from 2019 to 2021 across nearly all
measures examined in this section. Over these three years, proportional spreads decreased, execution ratios increased, order lifetimes
shortened, price impacts lessened, and adverse selection became less pronounced in the whole market. In addition, ‘‘Work-from-
home’’ stocks exhibited the smallest proportional spreads and Kyle’s Lambda in 2020, indicating increased trading activity and
attention during the COVID-19 period.

6. Determinants of high-frequency market liquidity

We have explored the intraday and cross-sectional patterns of various liquidity measures comprehensively. However, to
understand what determines the liquidity patterns, it is useful to study the mechanism of spread formation with respect to order
flows from a high-frequency perspective.

For relatively longer time periods such as minutes, high-frequency liquidity has been well investigated, including through
inventory models proposed by, for example, Grossman and Miller (1988) and Bogousslavsky and Collin-Dufresne (2023). In Appendix
G, we follow the framework of Bogousslavsky and Collin-Dufresne (2023) to examine the relationship between high-frequency
iquidity, volume, and volatility in order imbalance for the Chinese stock market.

In this section, we propose an alternative determinant of the quote bid–ask spread from the perspective of trading urgency based
on high-frequency data. We show that, over short time intervals, quote bid–ask spreads are mainly driven by the aggressive–passive
imbalance (API), which is defined as the imbalance between aggressive orders and passive orders. In Section 6.1, we define API
and reveal the natural linear relationship between the API and bid–ask spread. In Section 6.2, we propose a discrete classification
model for bid–ask spread based on the special properties of the change of spreads. Finally, in Section 6.3, we present the empirical
esults for the model and demonstrate the effectiveness of API as a determinant for change in spread.

19 See Appendix F.2.2 of the Online Supplementary Materials for a more detailed discussion on the ‘‘quantity discount’’ intuition behind 𝛾 .
18
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6.1. Aggressive–passive imbalance (API)

We first define API and then use a stylized model of the limit order book proposed by Cont et al. (2014) to illustrate the intuition
ehind the definition.

Definition 7 (API). For a specific stock, the aggressive–passive imbalance (API) of the stock from time 𝑡 to time 𝑡 + 𝛥𝑡 (𝛥𝑡 > 0) is
efined as

API𝑡,𝑡+𝛥𝑡 =
(𝐴𝑎

𝑡,𝑡+𝛥𝑡 + 𝐴𝑏
𝑡,𝑡+𝛥𝑡) + (𝐶𝑎

𝑡,𝑡+𝛥𝑡 + 𝐶𝑏
𝑡,𝑡+𝛥𝑡) − (𝑃 𝑎

𝑡,𝑡+𝛥𝑡 + 𝑃 𝑏
𝑡,𝑡+𝛥𝑡)

�̄�𝑡
, (6)

where 𝐴𝑎
𝑡,𝑡+𝛥𝑡, 𝐴𝑏

𝑡,𝑡+𝛥𝑡, 𝑃 𝑎
𝑡,𝑡+𝛥𝑡, 𝑃 𝑏

𝑡,𝑡+𝛥𝑡, 𝐶𝑎
𝑡,𝑡+𝛥𝑡, and 𝐶𝑏

𝑡,𝑡+𝛥𝑡 are the total volumes of the following orders from time 𝑡 to 𝑡 + 𝛥𝑡, respectively
(see Definitions A.2 and A.6 in Appendix B of the Online Supplementary Material for details): aggressive sell orders, aggressive
buy orders, passive sell orders, passive buy orders, cancellations of sell orders, and cancellations of buy orders; �̄�𝑡 is defined as the
verage of best 𝐾 (𝐾 = 5 in our empirical studies) levels of bid sizes and ask sizes at time 𝑡, i.e.,

�̄�𝑡 =
1
2𝐾

[ 𝐾
∑

𝑖=1
𝑛𝑏
(

𝑝𝑏𝑖 (𝑡), 𝑡
)

+
𝐾
∑

𝑖=1
𝑛𝑎
(

𝑝𝑎𝑖 (𝑡), 𝑡
)

]

. (7)

The concept of API laid out in Definition 7 represents the relative difference (imbalance) between aggressive orders and passive
orders. Note that, for simplicity, the cancellations are also regarded as ‘‘aggressive’’ (the sign before 𝐶𝑎

𝑡,𝑡+𝛥𝑡 +𝐶𝑏
𝑡,𝑡+𝛥𝑡 is plus), because

they are also realized immediately. Higher volumes of aggressive orders and cancellations lead to larger values of API, while higher
volumes of passive orders lead to smaller values of API.

With the help of API, we can use a linear model to explain the relationship between API and the change of bid–ask spread, 𝑆(𝑡),
from time 𝑡 to 𝑡 + 𝛥𝑡 for a specific stock. In particular, suppose that:

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡) = 𝛼 + 𝛽API𝑡,𝑡+𝛥𝑡 + 𝜀𝑡,𝑡+𝛥𝑡, 𝜀𝑡,𝑡+𝛥𝑡 ∼ 𝑁(0, 𝜎2𝛥𝑡), (8)

where 𝛼 , 𝛽 and 𝜎2 are unknown parameters. Here the parameter 𝛽 represents the impact coefficient of API on spread change.

6.1.1. Intuition for API
We now illustrate the intuition behind model (8) and API. In a similar vein to Cont et al. (2014), we consider a stylized model

of the limit order book. Suppose that there is a stylized order book that satisfies the following properties in a short time interval
[𝑡, 𝑡 + 𝛥𝑡):

(a) At time 𝑡, the depth20 of the limit order book at each price level less than or equal to the best bid, and each price level greater
than or equal to the best ask, equals to a constant 𝐷;

(b) During [𝑡, 𝑡 + 𝛥𝑡), all new cancellations and aggressive orders only occur at the best bid and best ask;
(c) During [𝑡, 𝑡 + 𝛥𝑡), if the depth of the best bid (or ask) is less than 𝐷, then new passive orders will fill in the best bid (or ask)

first; once the depth of the best bid (or ask) reaches 𝐷, the new passive orders will arrive 1 tick above (or below) the best
quote, initializing a new best level.

By definition, the depth of each price level of the stylized order book will never exceed 𝐷. The best bid and best ask fluctuate as
new orders and cancellations arrive successively.

Fig. 11 illustrates how the aggressive orders, passive orders, and cancellations drive the spread change of the stylized limit order
book with 𝐷 = 4. Parameter 𝛿 represents the tick size of the order book, e.g., 𝛿 = RMB 0.01 in China. During the time period [𝑡, 𝑡+𝛥𝑡),
Fig. 11(a) shows the impact of aggressive buy orders with volume 𝐴𝑏

𝑡,𝑡+𝛥𝑡 = 7 on the order book. All aggressive buy orders arrive at
he best ask, so the best ask increases by ⌊7∕4⌋𝛿 = 1𝛿 and the best bid does not change. Thus, the bid–ask spread will increase by 𝛿.
imilarly, Figs. 11(b) and 11(c) show the impact of passive sell orders and cancellations, respectively. The impact of cancellations
s similar to that of aggressive orders, not surprisingly. Therefore, as we have demonstrated, we regard cancellations as aggressive
n the definition of API (6). Finally, Fig. 11(d) is an example that combines the aggressive orders, passive orders, and cancellations.

In this stylized model of limit order book, the change of best ask price 𝑎(𝑡 + 𝛥𝑡) − 𝑎(𝑡) and best bid price 𝑏(𝑡 + 𝛥𝑡) − 𝑏(𝑡) satisfy:

𝑎(𝑡 + 𝛥𝑡) − 𝑎(𝑡) = 𝛿

⌊

𝐶𝑎
𝑡,𝑡+𝛥𝑡 + 𝐴𝑏

𝑡,𝑡+𝛥𝑡 − 𝑃 𝑎
𝑡,𝑡+𝛥𝑡

𝐷

⌋

, 𝑏(𝑡 + 𝛥𝑡) − 𝑏(𝑡) = −𝛿
⌊

𝐶𝑏
𝑡,𝑡+𝛥𝑡 + 𝐴𝑎

𝑡,𝑡+𝛥𝑡 − 𝑃 𝑏
𝑡,𝑡+𝛥𝑡

𝐷

⌋

.

Therefore, the spread change can be represented as

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡) = [𝑎(𝑡 + 𝛥𝑡) − 𝑏(𝑡 + 𝛥𝑡)] − [𝑎(𝑡) − 𝑏(𝑡)] = [𝑎(𝑡 + 𝛥𝑡) − 𝑎(𝑡)] − [𝑏(𝑡 + 𝛥𝑡) − 𝑏(𝑡)]

= 𝛿

⌊

𝐶𝑎
𝑡,𝑡+𝛥𝑡 + 𝐴𝑏

𝑡,𝑡+𝛥𝑡 − 𝑃 𝑎
𝑡,𝑡+𝛥𝑡

𝐷

⌋

+ 𝛿

⌊

𝐶𝑏
𝑡,𝑡+𝛥𝑡 + 𝐴𝑎

𝑡,𝑡+𝛥𝑡 − 𝑃 𝑏
𝑡,𝑡+𝛥𝑡

𝐷

⌋

.

Furthermore, according to (6), the definition of API, we have

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡) = 𝛿 ⋅ API𝑡,𝑡+𝛥𝑡 + 𝜀, (9)

where 𝜀 represents the truncation error of the floor function. Eq. (9) provides an explanation of the linear model (8).
19

20 See Definition A.4 in Appendix B of the Online Supplementary Material.
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Fig. 11. An illustration of spread changes in the stylized limit order book.

Eq. (9) also sheds light on the meaning of 𝛼 and 𝛽 in model (8). Under the stylized model, the following properties should hold:

𝛼 ≈ 0, 𝛽 ≈ 𝛿 . (10)

In other words, the spread should not change in the absence of an imbalance of aggressive and passive orders (𝛼 ≈ 0), and the
impact of API on the spread change should be equal to the tick size of the stock (𝛽 ≈ 𝛿).

Cont et al. (2014) use this stylized model of limit order book to analyze the change in the mid-price. In particular, they introduce
he concept of ‘‘order flow imbalance’’ (OFI), which is defined as the difference between the total volume of buy orders and sell
rders, measuring the imbalance between the buy and sell sides of the market. Our definition of API (Definition 7) is inspired by
FI, and the main difference between our API model and Cont et al. (2014) OFI model is that we focus on characterizing the change

in the spread, rather than the mid-price.

6.1.2. API and liquidity: Intraday patterns
Now we use our data to discover the empirical properties of API. For simplicity, in this section we only use the full-year data of

ing An Bank in 2019–2021 (the average stock price is approximately RMB 16.00) as samples and choose 𝛥𝑡 = 3s.
We first explore the distribution of API and Fig. 12(a) shows its histogram. APIs are nearly symmetrically distributed and centered

round 0. Panel (a) of Table 6 presents the summary statistics of API, whose sample average is negative, implying that the volume
of passive orders is generally greater than the total volume of aggressive orders and cancellations. Meanwhile, the distribution of
API has heavy tails. Panel (a) of Table 6 shows that the maximum of API is significantly larger than the 99% percentile, and the
minimum of API is considerably smaller than the 1% percentile.

Next, we investigate the intraday patterns of API. For each year and a specific period [𝑡, 𝑡 + 𝛥𝑡), we calculate the average API
over all trading days in the year. This produces an intraday time series of average API with a length of 237 (minutes per day) ×60
seconds per minute)∕3 (seconds) = 4740. Fig. 12(c) shows the time series of ‘‘intraday’’ API, in which it can be seen that the API

is negative at the open of the market, then increases to 0 in about one hour, and finally stays at around 0. This observation shows
that, at the beginning of each trading day, the volume of passive orders is substantially larger than that of aggressive orders and
cancellations. Investors quickly fill in vacancies in the limit order book using passive orders immediately after the market open,
and then switch to a mixture of aggressive orders and passive orders throughout the day. By examining Fig. 12(c) carefully, one
can also find that the API is slightly negative after the afternoon open (13:00). In addition, The API becomes positive before the

orning close (11:30), and the afternoon close (14:57). Generally speaking, there are more passive orders than aggressive orders
a negative API) at the market open, and more aggressive orders than passive orders (a positive API) at the market close.
20
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Fig. 12. Distribution and intraday time series of API and spread change 𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡), Ping An Bank, 2019–2021, 𝛥𝑡 = 3s.

Table 6
Distribution of API and spread change 𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡), Ping An Bank, 2019–2021, 𝛥𝑡 = 3s.

(a) Summary statistics of API. (b) Counts of spread change 𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡).

2019 2020 2021 2019 2020 2021

Sample number 972,214 1,043,856 1,080,546 Sample number 971,973 1,042,480 1,080,304
mean −0.0357 −0.0660 −0.1501 ≤ − 0.04 175 761 3,168

std 0.7036 1.1394 1.9964 −0.03 672 1,833 6,274
min −54.4670 −179.6650 −180.9570 −0.02 3,780 8,431 20,429
1% −2.0460 −3.1214 −5.8500 −0.01 38,024 60,985 95,223

25% −0.1160 −0.1556 −0.3087 0.00 887,901 900,435 833,711
50% −0.0054 −0.0099 −0.0190 0.01 36,118 58,045 90,167
75% 0.0803 0.1024 0.2006 0.02 4,195 8,876 20,913
99% 1.6971 2.3196 3.7862 0.03 828 2,178 6,775
max 187.3125 191.8961 277.4431 ≥0.04 280 936 3,644
21
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Fig. 13. Intraday average time series and the corresponding estimated spectral density function for different cross-sectional quantiles of API, 2020, 𝛥𝑡 = 3s.

In fact, the intraday patterns of API are consistent with the W-shaped pattern of the spread, as we have illustrated in Section 5.1.1.
Note that a negative API will lead to a narrower spread (better liquidity), and vice versa, as was explained in Section 6.1.1. Therefore,
the negative API after the market open implies a shrinkage of spread (better liquidity), while the positive API before the market
close means an expansion of spread (worse liquidity). It is the intraday shape of API that leads to the W-shaped spread.

The periodicity of the spread illustrated in Section 5.1.1 can also be explained via API. Taking 2020 as an example, Fig. 13(a)
shows the time series of different quantiles of intraday average API across all 1,936 stocks, and Fig. 13(b) shows the corresponding
estimated spectral density functions, which are calculated using the same methods as those employed in Section 5.1.1. We still find
that the API series have strong periodicities at 10-minute, 5-minute, and 1-minute. This explains the source of the intraday periodicity
of liquidity measures. Investors place aggressive and passive orders periodically, which leads to the periodicity of liquidity. This
further develops the ‘‘liquidity begets liquidity’’ phenomenon first documented in Foucault et al. (2013). In fact, we find that the
intraday pattern of API leads to ‘‘liquidity begets liquidity periodically’’ in the Chinese market.

6.2. A discrete classification model for spread change based on API

In this section, we construct a more refined model of spread change to account for the fact that the values of spread and spread
change are discrete. More precisely, the spread change can only take values of multiples of the tick size 𝛿. Section 6.2.1 studies the
discrete nature of spread change, Section 6.2.2 proposes the discrete classification framework, and Section 6.2.3 discusses the model
estimation.

6.2.1. Distribution of spread change
We begin by investigating the distribution of the spread change. Fig. 12(b) shows the bar plot of spread change, 𝑆(𝑡+𝛥𝑡) −𝑆(𝑡),

for Ping An Bank in 2019–2021. The values of 𝑆(𝑡+𝛥𝑡) −𝑆(𝑡) are not only discrete but that they also have a narrow range. Panel (b)
of Table 6 exhibits the counting numbers of different values that 𝑆(𝑡+𝛥𝑡) −𝑆(𝑡) takes. The table shows that 99.86% of 𝑆(𝑡+𝛥𝑡) −𝑆(𝑡)
are within −3𝛿 = −0.03 and +3𝛿 = +0.03, and 88.11% values are zero. In addition, 𝑆(𝑡+𝛥𝑡) −𝑆(𝑡) is nearly symmetrically distributed.

Fig. 12(d) shows the intraday average time series of spread changes for Ping An Bank in 2019–2021. The method to plot the
figure is similar to that shown in Fig. 12(c), i.e., the intraday curve of API. In comparison with the curve of API, though, the intraday
curve of spread change is much more stable. The average spread change is negative just after the open of the market, but it is not as
pronounced as the curve of API. The slightly negative spread change can be regarded as a result of the negative API at the beginning
of the trading day, because the influx of passive orders leads to a narrower spread.
22



Pacific-Basin Finance Journal 90 (2025) 102681C. Zhao et al.
Fig. 14. Histograms of the distribution defined by (11) versus parameters 𝑝 and 𝜆.

Taking the discrete feature of the spread change into consideration, we can use the following distribution to model the spread
change. Suppose that

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)
𝑑
= 𝛿 ⋅ 𝐵𝑡,𝑡+𝛥𝑡 ⋅𝑁𝑡,𝑡+𝛥𝑡, (11)

where random variable 𝐵𝑡,𝑡+𝛥𝑡 takes +1 or −1 with a probability of 𝑝𝑡,𝑡+𝛥𝑡 and 1 − 𝑝𝑡,𝑡+𝛥𝑡, respectively, random variable 𝑁𝑡,𝑡+𝛥𝑡 ∼
Poisson(𝜆𝑡,𝑡+𝛥𝑡), and 𝐵𝑡,𝑡+𝛥𝑡 and 𝑁𝑡,𝑡+𝛥𝑡 are independent. Parameters 𝑝𝑡,𝑡+𝛥𝑡 ∈ (0, 1) and 𝜆𝑡,𝑡+𝛥𝑡 ∈ (0,+∞) depend on the time interval
[𝑡, 𝑡 + 𝛥𝑡).

We now explain the meaning of (11). Random variable 𝐵𝑡,𝑡+𝛥𝑡 controls the direction of spread change: if 𝐵𝑡,𝑡+𝛥𝑡 = 1, [𝑆(𝑡 + 𝛥𝑡) −
𝑆(𝑡)]∕𝛿 will be a non-negative integer, while if 𝐵𝑡,𝑡+𝛥𝑡 = −1, [𝑆(𝑡+𝛥𝑡) −𝑆(𝑡)]∕𝛿 will be a non-positive integer. Random variable 𝑁𝑡,𝑡+𝛥𝑡
controls the magnitude of spread change. Furthermore, it is easy to verify that, under the assumption of (11),

E
(

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)
𝛿

)

= (2𝑝𝑡,𝑡+𝛥𝑡 − 1)𝜆𝑡,𝑡+𝛥𝑡,

E
|

|

|

|

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)
𝛿

|

|

|

|

= 𝜆𝑡,𝑡+𝛥𝑡,

E
(

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)
𝛿

)2
= 𝜆𝑡,𝑡+𝛥𝑡 + 𝜆2𝑡,𝑡+𝛥𝑡.

To further illustrate (11), we conduct some simple simulations. Fig. 14 shows the bar plots of the distribution defined by (11)
under different parameters 𝑝𝑡,𝑡+𝛥𝑡 and 𝜆𝑡,𝑡+𝛥𝑡. Here, for simplicity, we use a constant 𝑝𝑡,𝑡+𝛥𝑡 = 𝑝 and a constant 𝜆𝑡,𝑡+𝛥𝑡 = 𝜆, neither of
which relies on 𝑡. According to Fig. 14, if 𝑝 = 0.5, the distribution will be symmetric about zero; if 𝑝 > 0.5, there will be more mass
greater than zero; and if 𝑝 < 0.5, there will be more mass less than zero. Besides, the distribution will spread out as 𝜆 increases.
Note that the bar plot given 𝑝 = 0.5 and 𝜆 = 0.15 is very similar to Fig. 12(b), the bar plot of spread change. Therefore, (11) can be
used to model the distribution of spread change.

6.2.2. Model setup
Now we link the distribution of spread change with API. The linear model in Section 6.1 demonstrates that a higher API leads to

a higher probability of a positive spread change. To embody this intuitive relationship, suppose that the parameter 𝑝𝑡,𝑡+𝛥𝑡 of 𝐵𝑡,𝑡+𝛥𝑡
satisfies

𝑝𝑡,𝑡+𝛥𝑡 =
𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡

1 + 𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡
, (12)

where 𝛾 is an unknown parameter that does not depend on the time interval [𝑡, 𝑡 + 𝛥𝑡). This expression is similar to the logistic
regression. If 𝛾 > 0, a higher API will lead to a higher possibility of spread increase, and vice versa.

For simplicity, we further assume that the parameter 𝜆𝑡,𝑡+𝛥𝑡 with regard to 𝑁𝑡,𝑡+𝛥𝑡 is not correlated with API and is time-
homogeneous, i.e., there exists a constant 𝜆 such that 𝜆𝑡,𝑡+𝛥𝑡 = 𝜆 for all time intervals [𝑡, 𝑡 + 𝛥𝑡). While these may not be true for
all stocks, we still make these assumptions based on three facts. First, our empirical study shows that the API has a much weaker
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correlation with the magnitude than the direction of the spread change. In particular, for the 2020 data of Ping An Bank and 𝛥𝑡 = 3s,
we have

cor r(API, |𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)|
)

= −0.0097, cor r(API, sign(𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡))
)

= 0.0598. (13)

Second, by the intraday average time series of spread change (Fig. 12(d)), the magnitude of spread change has a stable pattern.
Third, these assumptions can not only derive our key results regarding the impact of API on the direction of spread change but also
maintain mathematical simplicity. In fact, we will see later in Section 6.2.3 that the parameters are easy to estimate under these
assumptions. Indeed, one could easily extend our model to include a non-homogeneous 𝜆.

We summarize our discrete classification model of spread change as follows:

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)
𝑑
= 𝛿 ⋅ 𝐵𝑡,𝑡+𝛥𝑡 ⋅𝑁𝑡,𝑡+𝛥𝑡,

where 𝐵𝑡,𝑡+𝛥𝑡 =

{

+1, with probability 𝑝𝑡,𝑡+𝛥𝑡,
−1 with probability 1 − 𝑝𝑡,𝑡+𝛥𝑡,

𝑁𝑡,𝑡+𝛥𝑡 ∼ Poisson(𝜆),

and 𝑝𝑡,𝑡+𝛥𝑡 =
𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡

1 + 𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡
. (14)

Here, 𝛾 ∈ (−∞,+∞) and 𝜆 ∈ (0,+∞) are unknown parameters.
In comparison with Model (8), Model (14) can not only characterize the distribution of spread change but also create chances for

us to analyze the direction and the magnitude of spread change separately. In particular, 𝐵𝑡,𝑡+𝛥𝑡 represents the direction of spread
hange, and 𝑁𝑡,𝑡+𝛥𝑡 represents the magnitude of spread change. The model has two parameters: 𝜆 and 𝛾. Parameter 𝜆 represents the
verage magnitude of spread change (or liquidity change) 𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡), and 𝛾 measures the impact of API on the direction of
pread change, i.e., the sensitivity of the direction of liquidity change with respect to the API.

6.2.3. Estimation
Here we discuss the estimation of parameters 𝜆 and 𝛾 in (14). Given 𝑛 samples (API𝑖, 𝑌𝑖), 𝑖 = 1, 2,… , 𝑛, where 𝑌𝑖 ∶=

𝑆(𝑡𝑖+𝛥𝑡)−𝑆(𝑡𝑖)
𝛿 ,

the likelihood function of our model is
𝐿(𝜆, 𝛾) =

∏

𝑖∶𝑌𝑖>0

[

𝑒𝛾⋅API𝑖
1 + 𝑒𝛾⋅API𝑖

𝜆𝑌𝑖
𝑌𝑖!

𝑒−𝜆
]

⋅
∏

𝑖∶𝑌𝑖<0

[(

1 − 𝑒𝛾⋅API𝑖
1 + 𝑒𝛾⋅API𝑖

)

𝜆−𝑌𝑖
(−𝑌𝑖)!

𝑒−𝜆
]

⋅
∏

𝑖∶𝑌𝑖=0

[

𝑒−𝜆
]

.

The corresponding log-likelihood function is
ln𝐿(𝜆, 𝛾) =

∑

𝑖∶𝑌𝑖>0

[

𝛾 ⋅ API𝑖
]

+
∑

𝑖∶𝑌𝑖≠0

[

− ln (1 + 𝑒𝛾⋅API𝑖
)

+ |𝑌𝑖| ln 𝜆
]

− 𝑛𝜆 + 𝐶 ,

where constant 𝐶 is not correlated with the unknown parameters. Thus, the maximum likelihood estimators (MLE) �̂� and �̂� should
atisfy the following two equations:

𝜕 ln𝐿(𝜆, 𝛾)
𝜕 𝜆 =

∑𝑛
𝑖=1 |𝑌𝑖|
𝜆

− 𝑛 = 0, (15)

𝜕 ln𝐿(𝜆, 𝛾)
𝜕 𝛾 =

∑

𝑖∶𝑌𝑖>0
API𝑖 −

∑

𝑖∶𝑌𝑖≠0

API𝑖𝑒𝛾⋅API𝑖

1 + 𝑒𝛾⋅API𝑖
= 0. (16)

These equations are easy to solve because parameters 𝜆 and 𝛾 are separated. Eq. (15) implies �̂� =
∑𝑛

𝑖=1 |𝑌𝑖|
𝑛 , and �̂� can be solved by (16)

numerically. One can easily check that (16) has a unique solution (including ±∞) because the left-hand side is strictly decreasing
wrt 𝛾, the limit is non-negative as 𝛾 → −∞ and non-positive as 𝛾 → +∞.

The MLE of 𝜆 is intuitive. Note that �̂� =
∑𝑛

𝑖=1 |𝑌𝑖|
𝑛 , i.e., the average of the absolute values of spread changes. This is consistent

with the meaning of 𝜆: the average magnitude of spread change 𝑆(𝑡+ 𝛥𝑡) − 𝑆(𝑡). The MLE of 𝛾 is slightly complicated, but it is also
consistent with the meaning of 𝛾: the metric of API’s impact on the direction of liquidity change. To strengthen our understanding
of (16), let us consider two special cases: the direction of spread change is determined by the direction of API perfectly, and the
direction of spread change is independent of API. For the former case, if 𝛾 = +∞, we have

∑

𝑖∶𝑌𝑖>0
API𝑖 −

∑

𝑖∶𝑌𝑖≠0

API𝑖𝑒𝛾⋅API𝑖

1 + 𝑒𝛾⋅API𝑖
=

∑

𝑖∶𝑌𝑖>0
API𝑖 −

∑

𝑖∶𝑌𝑖≠0,API𝑖>0
API𝑖 =

∑

𝑖∶𝑌𝑖>0
API𝑖 −

∑

𝑖∶𝑌𝑖>0
API𝑖 = 0.

Thus, �̂� = +∞. For the latter case, the MLE �̂� will be approximately zero because if 𝛾 = 0,
∑

𝑖∶𝑌𝑖>0
API𝑖 −

∑

𝑖∶𝑌𝑖≠0

API𝑖𝑒𝛾⋅API𝑖

1 + 𝑒𝛾⋅API𝑖
=

∑

𝑖∶𝑌𝑖>0
API𝑖 −

1
2

∑

𝑖∶𝑌𝑖≠0
API𝑖 ≈

∑

𝑖∶𝑌𝑖>0 API𝑖 −
∑

𝑖∶𝑌𝑖<0 API𝑖
2

≈ 0.

6.3. Empirical results

We have already proposed two models regarding how API influences the bid–ask spread including the linear regression model
8), and the discrete classification model (14). In this section, we show the empirical results based on the data of the Shenzhen Stock

Exchange. As before, we use data of all 1,936 stocks from 2019 to 2021. We still choose 𝛥𝑡 = 3s and each stock has approximately
730 × 237 × 60∕3 = 3, 460, 200 samples over three years.
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Fig. 15. Boxplots of 𝛼 and 𝛽’s 𝑝-values in the linear regression model. Results are based on 1,936 stocks in 2019, 2020, and 2021.

Fig. 16. Histogram and cross-sectional patterns of 𝛽’s in the linear regression model. Results are based on 1,936 stocks in 2019, 2020, and 2021.

6.3.1. Empirical results for the linear regression model
For each stock, we use the full-year data for each year of 2019–2021 to estimate the parameters 𝛼 and 𝛽 in (8) via ordinary least

squares. Fig. 15 shows the boxplots of 𝛼 and 𝛽’s 𝑝-values for all stocks during these three years. Almost all 𝛼’s are insignificant at
5% level (i.e., 𝑝-value > 0.05), which suggests that we cannot reject 𝛼 = 0 for most stocks. This is consistent with our illustration of
the linear model based on the stylized limit order book (see (10)). On the other hand, almost all 𝛽’s are significant (i.e., 𝑝-value <
0.05), which is the parameter that we are more concerned with. This implies that API does have a significant impact on the change
in spread.

Fig. 16(a) shows the histogram of 𝛽’s for all 1,936 stocks, and Table 7 presents the summary statistics of these 𝛽’s. Both the figure
and the table demonstrate that the 𝛽 for almost all stocks are positive. Therefore, the impact of API on spread change is positive.
However, the 𝛽’s vary across stocks and are not close to 𝛿 = RMB 0.01 as was demonstrated in (10). This suggests the viewpoint
proposed in Eisler et al. (2012) that the ‘‘real’’ tick sizes of the stocks may be different.

To further investigate the cross-sectional patterns of 𝛽, Fig. 16(b) shows the average 𝛽 for different stock classes. We make the
following observations:

(a) The 𝛽’s for the constituents of the SZI Index and the CSI 300 Index (in SZSE) are much greater than other stocks. In contrast,
the 𝛽’s for ST stocks are smaller compared to other stocks;

(b) The 𝛽 increases as the firm scale, the institutional holding, and the stock price increase.

It is also worth noting that the average 𝛽’s for different stock classes shown in Fig. 16(b) are similar to the cross-sectional patterns
of spread shown in Fig. 6 of Section 5.2. Since the spread is highly dependent on the tick size of stocks, the two figures further
demonstrate the meaning of 𝛽—the implied ‘‘real’’ tick size of stocks. Magnitudes of spreads are different since different stocks have
different levels of tick sizes.
25



Pacific-Basin Finance Journal 90 (2025) 102681C. Zhao et al.
Table 7
Summary statistics of estimated parameters in the linear regression model and the discrete classification model. Results are based
on 1,936 stocks in 2019, 2020, and 2021.

API regression API discrete

𝛽 (×10−4) 𝑅2 (×10−3) 𝜆 𝛾 AUC1 AUC2

(a) 2019

mean 3.38 4.14 0.47 0.17 0.56 0.58
std 1.50 2.46 0.71 0.18 0.02 0.02
min −5.32 0.00 0.00 −0.00 0.49 0.46
1% quantile 0.08 0.07 0.01 0.02 0.53 0.55
25% quantile 2.69 2.40 0.10 0.06 0.55 0.57
50% quantile 3.33 3.99 0.24 0.12 0.56 0.58
75% quantile 3.96 5.59 0.58 0.21 0.57 0.60
99% quantile 8.01 10.75 3.12 0.83 0.61 0.64
max 24.07 27.93 11.01 3.76 0.66 0.68

(b) 2020

mean 3.11 4.22 0.57 0.14 0.56 0.59
std 1.65 2.34 0.99 0.20 0.02 0.02
min −1.60 0.00 0.00 −0.00 0.49 0.45
1% quantile 0.31 0.07 0.01 0.01 0.52 0.56
25% quantile 2.46 2.46 0.10 0.05 0.54 0.58
50% quantile 3.05 4.15 0.26 0.10 0.56 0.59
75% quantile 3.60 5.83 0.66 0.18 0.57 0.60
99% quantile 7.22 9.73 4.06 0.70 0.61 0.65
max 41.09 15.98 17.51 5.31 0.63 0.68

(c) 2021

mean 2.31 3.35 0.57 0.12 0.56 0.59
std 1.49 2.26 1.10 0.17 0.02 0.02
min −6.47 0.00 0.00 −0.01 0.47 0.45
1% quantile −1.05 0.01 0.01 0.00 0.51 0.55
25% quantile 1.65 1.57 0.09 0.03 0.54 0.57
50% quantile 2.37 3.16 0.23 0.07 0.55 0.59
75% quantile 2.90 4.90 0.61 0.16 0.57 0.60
99% quantile 6.69 8.67 4.56 0.78 0.60 0.65
max 17.64 21.36 15.19 3.27 0.63 0.70

Fig. 17. Intraday average time series of 𝑝𝑡,𝑡+𝛥𝑡 =
𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡

1+𝑒𝛾⋅API𝑡,𝑡+𝛥𝑡
for Ping An Bank in 2020. (𝛥𝑡 = 3s).

The 𝑅2 for the linear regression model is also shown in Table 7. Although the parameter 𝛽’s are significant, the largest 𝑅2 among
all stocks in 2019–2021 is less than 3%, which implies that the goodness-of-fit is not satisfactory. This is our motivation to consider
the discrete classification model instead of the linear regression model.

6.3.2. Empirical results for the discrete classification model
Now, for each stock, we use all data in 2019–2021 to estimate the parameters 𝜆 and 𝛾 in the discrete classification model (14).

The estimation method is given in (15) and (16).
We first take the estimation results of Ping An Bank as an example. The estimated 𝛾 = 0.2055 is greater than zero, which implies

that a positive API will lead to a higher probability of spread expansion than spread shrinkage. The estimated 𝜆 = 0.1663, which
represents the average magnitude of spread change. In addition, Fig. 17 presents the ‘‘intraday’’ average time series of 𝑝𝑡,𝑡+𝛥𝑡, which
is obtained by calculating the intraday time series of 𝑝𝑡,𝑡+𝛥𝑡 for each trading date first and then averaging the results of all dates for
the same time period [𝑡, 𝑡 + 𝛥𝑡). The trend of the figure is similar to Fig. 12(c), the intraday average time series of API, except that
it is much smoother. We observe that the average probability of increasing spread is between 0.46 and 0.5 at the market open and
then rises to 0.5 in around an hour.

We then consider cross-sectional patterns. Figs. 18(a) and 18(b) show the histogram of 𝜆’s and 𝛾 ’s for all 1,936 stocks, respectively,
and Table 7 contains their summary statistics. Both the figures and the table show that the 𝛾 for almost all stocks are positive in
2019–2021. In other words, a positive API will lead to a higher probability of spread expansion (i.e., worse liquidity).
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Fig. 18. Histogram and cross-sectional patterns of 𝜆’s and 𝛾 ’s in the discrete classification model for 1,936 stocks in 2019, 2020, and 2021.

Fig. 18(c) shows the average 𝜆’s and 𝛾 ’s for different categories of stocks in each year. Interestingly, the results are slightly
different from the results presented in Section 6.3.1. On the one hand, we find that the 𝜆’s are positively correlated with the
stock price, the firm scale, and the institutional holding. This is intuitive because 𝜆 measures the magnitude of spread change,
and the stocks of large-scale firms and with large institutional holdings usually have high prices, which lead to a high magnitude
of spread (Eisler et al., 2012). This result is also consistent with the cross-sectional patterns of 𝛽 (Fig. 16(b) in Section 6.3.1) and
spread (Fig. 6 in Section 5.2).

On the other hand, we notice that 𝛾 is negatively correlated with the stock price and appears to not be correlated with firm scale
and institutional holding. Because 𝛾 measures the sensitivity of the direction of spread change with regards to API, our empirical
results imply that the API has a weaker impact on the direction of liquidity change for higher-priced stocks. This result is also
intuitive since the liquidity of high-price stocks should be far more stable and the imbalance of aggressive and passive orders should
have less of an impact on the liquidity of these stocks.

In addition, Fig. 19 shows the scatter plot of 𝜆 and 𝛾 versus the market values, average volumes, and average prices of all
stocks from 2019 to 2021. It further demonstrates that the 𝜆 and 𝛾 are negatively and positively correlated with the stock price,
respectively. The pattern for average volume is thus reversed. Meanwhile, neither parameter is significantly correlated with the
market value of stocks. These correlations are consistent for the three years 2019, 2020, and 2021.

Finally, to study the goodness-of-fit of the discrete classification model, we calculate the area under the receiver operating
characteristic (ROC) curve (AUC) of the classification. Because the AUC is only defined for binary classification problems, we consider
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Fig. 19. Scatter plots of 𝜆 and 𝛾 versus market capitalization, average volume and average price for 1,936 stocks in 2019 (orange), 2020 (blue), and 2021
(green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the following two binary classification methods:

(1) We classify the spread change as non-negative if API𝑡,𝑡+𝛥𝑡 > 0, and classify the spread change as negative if API𝑡,𝑡+𝛥𝑡 < 0.
(2) We classify the spread change as positive if API𝑡,𝑡+𝛥𝑡 > 0, and classify the spread change as non-positive if API𝑡,𝑡+𝛥𝑡 < 0.

We denote the corresponding AUCs for both methods by AUC1 and AUC2. The summary statistics of AUCs for all stocks are shown
in Table 7. For the binary classification method (1), the average AUC is 0.56 during 2019–2021, whereas for method (2), it is 0.58
in 2019 and 0.59 in both 2020, and 2021. Since both values are greater than 0.5, these results demonstrate that using API to classify
spread changes performs better than making a random guess.

In conclusion, our API model provides a supplement to the empirical facts of various liquidity measures shown in Section 4,
highlighting the mechanism through which liquidity is determined by order flows. The linear model (8) empirically reveals that the
imbalance between aggressive orders and passive orders, i.e., the API, determines the change of liquidity (spread). The intraday
patterns of API explain the W-shaped liquidity and its intraday periodicity. Furthermore, the discrete classification model (14)
demonstrates that the impact of API on the direction of liquidity change is negatively correlated with the stock price, but not the
company scale and the level of institutional ownership. Meanwhile, stocks with higher stock prices, firm scales, or institutional
ownership show higher magnitudes of liquidity change in response to API.

7. Conclusion

In this article, we provide a comprehensive analysis of market liquidity in the Chinese stock market based on the SZSE Historical
Tick Data of the Shenzhen Stock Exchange in 2019–2021. In total, we have processed approximately 1,936 (stocks) × 730 (trading
days) × 33,000 (average number of events per stock per day) = 46.64 billion events and reconstructed the evolution of the limit order
book with the most granular information possible. This enables us to compare different liquidity measures systematically, analyze
their time-series and cross-sectional patterns, and study their determinants. Our comprehensive dataset with the reconstructed order
book also opens up new avenues for microstructure-related research in the Chinese stock market.

We study intraday patterns of trading cost-based and execution efficiency-based liquidity measures, using the average spread and
order lifetime as primary examples. Due to the lunch break in the Chinese stock market, the intraday shape of the average spread
resembles a W-shape rather than the traditional U-shape in developed markets. Moreover, we also observe intraday periodicities in
the time series of the average spread.

Moreover, we investigate the cross-sectional patterns of different liquidity measures. First, stocks with the special treatment
status (ST) show worse liquidity as shown by their higher proportional spread (including the proportional effective spread and
the proportional weighted average spread), lower execution ratios (including execution ratios at a single price, at a single time,
and at the best price), higher order lifetimes, lower estimated 𝛼’s, and larger Kyle’s Lambdas compared to the average level of the
28
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corresponding liquidity measures across all stocks. In addition, stocks in the CSI 300 Index show better liquidity indicated by their
small proportional spread, high execution ratios, low order lifetimes, high estimated 𝛼’s, and low Kyle’s Lambdas. We also find that
liquidity is correlated with firm size and the scale of stock prices. Stocks for large firms or with a high stock price tend to have a
arger spread but a smaller proportional spread than other stocks. Both the order lifetime and Kyle’s Lambda decrease as the scale
f the firm or the stock price increases. Overall, these results highlight several stock characteristics that are associated with the level
f liquidity.

Our analysis also reveals improvements in market liquidity in the Chinese market from 2019 to 2021. Almost all liquidity
measures improve significantly over these three years across nearly all categories of stocks. Some distinctive trading dynamics during
the COVID-19 period are also observed. For example, more significant intraday periodic patterns at 5- and 10-minute frequencies
emerged in 2020, likely due to increased retail trading activities. In addition, ‘‘Work-from-home’’ stocks exhibit the highest liquidity
based on measures of trading costs and price impact during the COVID-19 pandemic, implying increased attention on these stocks.

To explain the change in spread, we propose a function of the imbalance between aggressive and passive orders, which we define
as the aggressive–passive imbalance (API). The empirical results demonstrate that the impact of API on spread change is statistically
significant. Furthermore, the intraday patterns of liquidity, such as the W-shape and periodicity, can also be explained by the API.
Much like the intuition of ‘‘liquidity begets liquidity’’ first proposed in Foucault et al. (2013), we discover that with the intraday
patterns for API, ‘‘liquidity begets liquidity periodically’’ in the Chinese stock market.

Empirical results of a discrete classification model of the change in spread based on the API demonstrate that the impact of API
n the direction of liquidity change is negatively correlated with the stock price. Meanwhile, stocks with higher prices, from larger

firms, and with more institutional holdings demonstrate higher magnitudes of liquidity change. These implications from our model
not only align with the empirical facts of liquidity measures but also shed light on the formation mechanism of high-frequency market
liquidity. The API model provides a complement to the existing research on characterizing liquidity from an alternative perspective
hat is different from the inventory-based approaches proposed by studies such as Grossman and Miller (1988) and Bogousslavsky

and Collin-Dufresne (2023).
Overall, our comprehensive study provides the measurements, patterns, and determinants for high-frequency liquidity, which

we hope will serve as an empirical benchmark for liquidity in the Chinese stock market whilst also providing the impetus for more
in-depth analysis of market liquidity and other microstructure topics.
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