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The Checkerboard Copula and Dependence Concepts\ast 

Liyuan Lin\dagger , Ruodu Wang\dagger , Ruixun Zhang\ddagger , and Chaoyi Zhao\S 

Abstract. We study the problem of choosing the copula when the marginal distributions of a random vector are
not all continuous. Inspired by four motivating examples, including simulation from copulas, stress
scenarios, corisk measures, and dependence measures, we propose to use the checkerboard copula,
that is, intuitively, the unique copula with a distribution that is as uniform as possible within
regions of flexibility. We show that the checkerboard copula has the largest Shannon entropy, which
means that it carries the least information among all possible copulas for a given random vector.
Furthermore, the checkerboard copula preserves the dependence information of the original random
vector, leading to two applications in the context of diversification penalty and impact portfolios.
The numerical and empirical results illustrate the benefits of using the checkerboard copula in the
calculation of corisk measures.
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1. Introduction. The copula theory has been actively studied over the past few decades
with many applications in statistics, finance, engineering, and the natural sciences; for an
introduction, see the monographs of Nelsen (2006) and Joe (2015).

It is well known through Sklar's theorem (Nelsen (2006, Theorem 2.10.9)) that the cop-
ula of a random vector is unique if and only if it has continuous marginal distributions.
However, when the marginals are noncontinuous, the uniqueness of the copula no longer
holds. Discrete marginals are common in empirical studies, as the collected data are often
discrete. Several works, including Marshall (1996), Carley (2002), Perrone, Solus, and Uhler
(2019), and Geenens (2020), discuss the dependence structure of discrete data through copulas.
Genest and Ne\v slehov\'a (2007) discuss difficulties in identifying copulas for discrete distribu-
tions.
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 427

The purpose of this paper is to understand whether it is possible to identify a canonical copula
for a random vector in some sense if it does not have continuous marginal distributions.

To answer this question, we seek inspiration from four applications. Let \bfX = (X1, . . . ,Xd)
be a d-dimensional random vector with d\geqslant 2, which may have nonunique copulas. Denote by
\scrC \bfX the set of all copulas of \bfX . For a random variable X, its probability integral transform U
is a uniform random variable on [0,1] satisfying F - 1(U) =X a.s., where F is the distribution
function of X and F - 1 is the quantile function of X. Let (U1, . . . ,Ud) be any vector of
probability integral transforms of X1, . . . ,Xd with a joint distribution C; certainly, C is a
copula of \bfX . All random variables live in an atomless probability space (\Omega ,\scrF ,\BbbP ).

1. \bfS \bfi \bfm \bfu \bfl \bfa \bft \bfi \bfn \bfg \bff \bfr \bfo \bfm \bft \bfh \bfe \bfc \bfo \bfp \bfu \bfl \bfa \bfo \bff \bfX . One of the most popular applications of copulas
in finance is to model default correlation, as famously done by Li (2000); see McNeil,
Frey, and Embrechts (2015) for discussions. In such applications, one needs to simulate
from the copula of \bfX , where \bfX may have noncontinuous marginal distributions (e.g.,
losses from default events). Assume that we can simulate \bfX and that we also have
knowledge of all marginal distributions of \bfX . How can we find a reasonable copula
C \in \scrC \bfX to simulate from, that is, determined only by \bfX but not by any particular
modeling choices (such as the Gaussian copula)?

2. \bfS \bft \bfr \bfe \bfs \bfs \bfi \bfn \bfg \bft \bfh \bfe \bfd \bfi \bfs \bft \bfr \bfi \bfb \bfu \bft \bfi \bfo \bfn \bfo \bff \bfX . In sensitivity analysis and risk management, it
is often necessary to stress, or distort, the distribution of \bfX to obtain poststress dis-
tributions. In the stressing mechanisms studied by Millossovich, Tsanakas, and Wang
(2024), one needs to find a stressed probability measure Q1 by using dQ1/d\BbbP = g(U1)
for a nonnegative increasing function g with

\int 1
0 g(u)du = 1, such as g(u) = 2u. The

simple interpretation of Q1 is to gradually increase the weight of realizations \omega \in \Omega at
which X1 is large. Similarly, one can simultaneously stress all components of \bfX by con-
sidering a measure Q such that dQ/d\BbbP = (1/d)

\sum d
i=1 gi(Ui) or dQ/d\BbbP = c

\prod d
i=1 gi(Ui)

with a normalizing constant c > 0 (c = 1 if U1, . . . ,Ud are independent), where gi are
nonnegative increasing functions with

\int 1
0 gi(u)du= 1. If we are only interested in the

poststress distribution \^FQ1

1 of X1 under Q1, then the choice of the copula C \in \scrC \bfX is

irrelevant. However, the choice of the copula C \in \scrC \bfX matters for the distribution \^FQ
i

of Xi under Q as well as for the distribution \^FQ1

i of Xi under Q1.
3. \bfC \bfo \bfm \bfp \bfu \bft \bfi \bfn \bfg \bfa \bfc \bfo \bfr \bfi \bfs \bfk \bfm \bfe \bfa \bfs \bfu \bfr \bfe . Corisk measures (e.g., Adrian and Brunnermeier

(2016)) are calculated for the conditional distribution of a random variable X2 given
some event related to X1. A classic example is the marginal expected shortfall (mar-
ginal ES) at level p \in (0,1), which is defined as, assuming that X1 is continuously
distributed:

\rho (X2| X1) :=\BbbE [X2| X1 >F - 1
1 (p)] =\BbbE [X2| U1 > p].(1)

Generally, \rho is the mean of X2 given a (not necessarily unique) p-tail event of X1 in
the sense of Wang and Zitikis (2021). This risk measure \rho does not depend on the
choice of C \in \scrC \bfX if X1 is continuously distributed (p-tail event is unique a.s.); however,
it may depend on C \in \scrC \bfX if X1 has some points of mass. Other corisk measures, such
as CoVaR (Adrian and Brunnermeier, 2016), also face the same issue.
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428 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

4. \bfM \bfa \bfi \bfn \bft \bfa \bfi \bfn \bfi \bfn \bfg \bfd \bfe \bfp \bfe \bfn \bfd \bfe \bfn \bfc \bfe \bfm \bfe \bfa \bfs \bfu \bfr \bfe \bfs . Kendall's \tau is a dependence measure de-
fined based on concordance. For a bivariate random vector (X,Y ), its Kendall's \tau is
defined as

\tau (X,Y ) = \BbbP ((X1  - X2)(Y1  - Y2)> 0) - \BbbP ((X1  - X2)(Y1  - Y2)< 0) ,

where (X1, Y1) and (X2, Y2) are two independent copies of (X,Y ). If (X,Y ) has con-
tinuous marginals, then we have further

\tau (X,Y ) = 4

\int 
[0,1]2

C(\bfu )dC(\bfu ) - 1,(2)

where C is the copula for (X,Y ). If (X,Y ) has noncontinuous marginals, then (2) does
not hold for every C \in \scrC (X,Y ). It is natural to ask which copula C \in \scrC (X,Y ) conveys the
property in the case of continuous marginals. We can also consider similar applications
for other concordance-based dependence measures, such as Spearman's \rho .

All of the above contexts point to the question of choosing a good copula C \in \scrC \bfX . Ne\v slehov\'a
(2004) discusses similar applications for the choice of copulas. The main idea of Ne\v slehov\'a
(2004) is to extend the subcopula, which is the part of the copula that is uniquely determined
by joint distribution, to capture the dependence of the original random vector analogous to
the case with continuous marginals. In this paper, we address this problem from the view of
probability integral transformation. We first offer a new characterization of all copulas of a
given random vector by constructing all probability integral transformations in section 2 in
Theorem 1. In section 3, we give some intuitive and heuristic arguments for the questions
above, leading to the proposal of using the checkerboard copula, that is, the unique copula
of \bfX that is as uniform as possible in regions where the copulas of \bfX are not uniquely deter-
mined, formally defined in Definition 1. The checkerboard copula is the same as the standard
extension proposed by Ne\v slehov\'a (2004), which has been shown to preserve quadrant depen-
dence, tail dependence, and weak convergence results of the joint distribution. Although the
arguments in section 3 are heuristic, the use of the checkerboard copula indeed has a theoret-
ical justification, which we present in section 4. The checkerboard copula has the maximum
Shannon entropy among all possible copulas of \bfX , as shown in Theorem 2. In section 5, we
show in Theorem 3 that the checkerboard copula preserves various dependence concepts that
are satisfied by \bfX . This result is intuitive, but the proof requires serious technical analysis.
We discuss two applications of our results in diversification penalty and induced order sta-
tistics in section 6. Section 7 uses numerical and empirical experiments to demonstrate that
the checkerboard copula is a convenient and natural choice that can produce reliable results.
Section 8 concludes the paper.

2. Copulas for a discrete random vector. Let d\geqslant 2 be an integer, and let [d] = \{ 1, . . . , d\} .
All inequalities are interpreted componentwise when applied to vectors. All random variables
live in an atomless probability space (\Omega ,\scrF ,\BbbP ). Let \bfX = (X1, . . . ,Xd) be a d-dimensional
random vector, F1, . . . , Fd be the marginal distributions of \bfX , and Ran(Fi) be the range of Fi

for i \in [d]. By Sklar's theorem, the copula of \bfX is uniquely determined on Ran(F1)\times \cdot \cdot \cdot \times 
Ran(Fd) but undetermined in other regions. Therefore, when the marginal distribution Fi is
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 429

not continuous for some i \in [d], the copula of \bfX may not be unique. In this section, we give
a concrete representation for any copulas of \bfX .

We start with the observation that if a random variable X is continuously distributed,
then the random variable

UX := FX(X)

will be uniformly distributed over [0,1], where FX is the cumulative distribution function of
X. More generally, regardless of whether X is continuously distributed, we can define its
probability integral transform

UX := FX(X - ) + VX(FX(X) - FX(X - )),(3)

where FX(x - ) = limy\uparrow xFX(x) = \BbbP (X < x) for x \in \BbbR and VX \sim U[0,1] is independent
of X, assumed to exist.1 The probability integral transform UX satisfies UX \sim U[0,1] and
F - 1
X (UX) =X a.s. (see, e.g., R\"uschendorf (2013, Proposition 1.3)). Therefore, the probability

integral transform (3) converts any random variable X to a U[0,1] distributed random variable
UX using VX .

We extend this idea to the case of a random vector \bfX . Let \bfV = (V1, . . . , Vd) be a random
vector with U[0,1] marginals such that Vi is independent of Xi for each i \in [d]. Denote
the set of such \bfV by \scrV \bfX . Similar to (3), let us define the probability integral transform for
\bfX = (X1, . . . ,Xd):

Ui := Fi(Xi - ) + Vi(Fi(Xi) - Fi(Xi - )), i\in [d].(4)

It immediately follows that Ui \sim U[0,1] and F - 1
i (Ui) = Xi a.s. Therefore, \bfU = (U1, . . . ,Ud)

is a random vector with uniform marginals. This transformation comes from randomized
hypothesis tests (Ferguson (1967, section 5.3)) and has been applied in various contexts; see,
e.g., Moore and Spruill (1975), Ne\v slehov\'a (2007), R\"uschendorf (1981, 2009, 2013), and Faugeras
(2017).

Let C\bfV 
\bfX be the copula of \bfU . Because F - 1

i (Ui) =Xi a.s. for each i\in [d], we have

C\bfV 
\bfX (F1(x1), . . . , Fd(xd)) = \BbbP (U1 \leqslant F1(x1), . . . ,Ud \leqslant Fd(xd)) = \BbbP (X1 \leqslant x1, . . . ,Xd \leqslant xd)

for any (x1, . . . , xd)\in \BbbR d. Hence, C\bfV 
\bfX is a copula of \bfX .

According to (4), the copula C\bfV 
\bfX is determined by the joint distribution of (\bfX ,\bfV ). In

particular, the copula C\bfV 
\bfX does not depend on the choice of Vi for i such thatXi is continuously

distributed because, for these i, Ui in (4) is a.s. equal to Fi(Xi), while for i such that Xi is
discrete, Vi does have an impact on the copula C\bfV 

\bfX .
In general, the choice of \bfV \in \scrV \bfX for constructing the copula C\bfV 

\bfX may not be unique. This
is because \scrV \bfX allows two types of dependence that might be present in the construction of
\bfV : First, the components of \bfV may be mutually dependent. Second, Vi may depend on Xj

1This assumption is safe, as we are interested in distributional properties, and we can extend the probability
space to include such independent VX , if necessary.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

5/
25

 to
 1

8.
29

.2
49

.2
42

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



430 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

for i \not = j. Naturally, a different choice of \bfV \in \scrV \bfX often leads to a different copula C\bfV 
\bfX ; see the

following example.

Example 1. Assume that d= 2, X1 is a constant and that X2 is continuously distributed.
It is well known that any copula is a copula of \bfX in this case. For instance, by choosing V1

to be independent of X2, C
\bfV 
\bfX is the independence copula, and by choosing V1 = F2(X2), C

\bfV 
\bfX 

is the comonotonic copula.

The following result says that all copulas of X can be realized by some C\bfV 
\bfX . Hence, (4)

gives a stochastic representation for any copula of \bfX . The representation is quite intuitive,
but we did not find it in the literature, so we provide a self-contained proof.

Theorem 1. Let \bfX be a random vector such that there exists a continuously distributed
random variable independent of \bfX . A copula C is a copula of \bfX if and only if C = C\bfV 

\bfX for
some \bfV \in \scrV \bfX .

Proof. We have seen that C\bfV 
\bfX is a copula of \bfX . It suffices to show the ``only if"" statement.

Let C be a copula of \bfX , take \bfU \prime = (U \prime 
1, . . . ,U

\prime 
d)\sim C, and write \bfX \prime =

\bigl( 
F - 1
1 (U \prime 

1), . . . , F
 - 1
d (U \prime 

d)
\bigr) 
.

Because C is a copula of \bfX , for \bfx = (x1, . . . , xd)\in \BbbR d, we have

\BbbP (\bfX \leqslant \bfx ) =C (F1(x1), . . . , Fd(xd)) = \BbbP 
\bigl( 
U \prime 
1 \leqslant F1(x1), . . . ,U

\prime 
d \leqslant Fd(xd)

\bigr) 
= \BbbP 

\bigl( 
F - 1
1 (U \prime 

1)\leqslant x1, . . . , F
 - 1
d (U \prime 

d)\leqslant xd
\bigr) 
= \BbbP (\bfX \prime \leqslant \bfx ).

Hence, \bfX 
\mathrm{d}
= \bfX \prime . Take \bfU \ast = (U\ast 

1 , . . . ,U
\ast 
d ) such that (\bfX ,\bfU \ast )

\mathrm{d}
= (\bfX \prime ,\bfU \prime ), and we then have

\bfX =
\bigl( 
F - 1
1 (U\ast 

1 ), . . . , F
 - 1
d (U\ast 

d )
\bigr) 
a.s. Furthermore, take V \prime \sim U[0,1], which is independent of

(\bfX ,\bfU \ast ). The existence of \bfU \ast and V \prime is guaranteed by the assumption of the existence of a
continuously distributed random variable independent of \bfX . For i \in [d], let \bfV = (V1, . . . , Vd)
be given by

Vi =
U\ast 
i  - Fi(Xi - )

Fi(Xi) - Fi(Xi - )
1\{ Fi(Xi)>Fi(Xi - )\} + V \prime 1\{ Fi(Xi)=Fi(Xi - )\} .

Fix i \in [d] below. Let Di be the set of discontinuity points of Fi. Note that for x \in Di, we
have

\BbbP (U\ast 
i \in [Fi(x - ), Fi(x)]| Xi = x) = 1 and \BbbP (U\ast 

i \in [Fi(x - ), Fi(x)]| Xi \not = x) = 0.

Because U\ast 
i is uniformly distributed over [0,1], U\ast 

i is uniform on [Fi(x - ), Fi(x)] conditional
on Xi = x\in Di. Thus,

\BbbP (U\ast 
i \leqslant u| Xi = x) =

u - Fi(x - )

Fi(x) - Fi(x - )
, u\in [F - 1

i (x - ), F - 1
i (x)].

Therefore, for u\in [0,1],

\BbbP (Vi \leqslant u| Xi) = \BbbP 
\biggl( 

U\ast 
i  - Fi(Xi - )

Fi(Xi) - Fi(Xi - )
\leqslant u
\bigm| \bigm| \bigm| Xi

\biggr) 
1\{ Xi\in Di\} + \BbbP (V \prime \leqslant u)1\{ Xi \not \in Di\} 

= \BbbP (U\ast 
i \leqslant u(Fi(Xi) - Fi(Xi - )) + Fi(Xi - )| Xi)1\{ Xi\in Di\} + u1\{ Xi \not \in Di\} 

= u1\{ Xi\in Di\} + u1\{ Xi \not \in Di\} = u.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 431

Hence, Vi follows U[0,1] and is independent of Xi. Note that, by the construction, U\ast 
i , Vi,

and Xi satisfy U\ast 
i = Fi(Xi - ) + Vi(Fi(Xi) - Fi(Xi - )) a.s., and hence \bfU \ast \sim C\bfV 

\bfX . This shows
that C =C\bfV 

\bfX .

Theorem 1 implies that \scrC \bfX = \{ C\bfV 
\bfX : \bfV \in \scrV \bfX \} , providing a characterization of copulas in

a stochastic form. Note that \scrC \bfX is a singleton if and only if all marginal distributions of \bfX ,
F1, . . . , Fd, are continuous functions. The ``if"" direction of Theorem 1 in the case d = 2 is
shown by Ne\v slehov\'a (2007, Proposition 4). The characterization of copulas in an analytical
form is provided by de Amo et al. (2017).

3. Motivating arguments for the checkerboard copula. Theorem 1 gives the entire class
of copulas for \bfX . We now consider which \bfV \in \scrV \bfX can answer the four motivating questions
in section 1, which all point to the same unique choice of \bfV \in \scrV \bfX .

1. \bfS \bfi \bfm \bfu \bfl \bfa \bft \bfi \bfn \bfg \bff \bfr \bfo \bfm \bft \bfh \bfe \bfc \bfo \bfp \bfu \bfl \bfa \bfo \bff \bfX . A natural approach to simulating from the
copula of \bfX with some atoms in the marginal distributions is by first simulating a pair
of (\bfX ,\bfV ) and then applying the probability integral transform using (4). Theorem 1
shows that all copulas of \bfX can be simulated this way. For this purpose, the simplest
and most natural choice of \bfV is \bfV \sim U

\bigl( 
[0,1]d

\bigr) 
, which is independent of \bfX . In fact,

we could not think of an argument against the use of this particular \bfV in the context
of simulation.

2. \bfS \bft \bfr \bfe \bfs \bfs \bfi \bfn \bfg \bft \bfh \bfe \bfd \bfi \bfs \bft \bfr \bfi \bfb \bfu \bft \bfi \bfo \bfn \bfo \bff \bfX . To understand how the choice of \bfV affects the
stressed distribution ofX2, we look at the simple example in Example 1 with g(u) = 2u.
Choosing V1 independent of X2 would lead to \^FQ1

2 = F2, whereas choosing V1 = F2(X2)

would lead to \^FQ1

2 = (F2)
2. Because we are interested in the effect of stressing X1 on

X2 and because X1 is a constant in this example, it is natural to choose a V1 that
affects the distribution of X2 minimally, which is achieved when V1 is independent of
X2. Translating this argument into the general d-dimensional setting suggests choosing
\bfV \sim U

\bigl( 
[0,1]d

\bigr) 
independent of \bfX .

3. \bfC \bfo \bfm \bfp \bfu \bft \bfi \bfn \bfg \bfa \bfc \bfo \bfr \bfi \bfs \bfk \bfm \bfe \bfa \bfs \bfu \bfr \bfe . To understand how the choice of \bfV affects the
value of the corisk measure, we again look at Example 1. We have \rho (X2| X1) = \BbbE [X2]
if V1 is independent of X2 and \rho (X2| X1) = ESp(X2) if V1 = F2(X2), where ESp(X2) =
\BbbE [X2| U2 > p] is the ES of X2 at level p. The interpretation of \rho as the mean of X2 on
a tail event of X1 suggests that it is natural to choose V1 independent of X2 because
X1 is a constant and its tail event should not affect X2.

4. \bfM \bfa \bfi \bfn \bft \bfa \bfi \bfn \bfi \bfn \bfg \bfd \bfe \bfp \bfe \bfn \bfd \bfe \bfn \bfc \bfe \bfm \bfe \bfa \bfs \bfu \bfr \bfe \bfs . It has been shown in Denuit and Lambert
(2005), Ne\v slehov\'a (2007), and Genest and Ne\v slehov\'a (2007) that (2) holds for the
copula introduced by \bfV \sim U([0,1]2). This property leads to extensions of dependence
measures in the multivariate case based on this copula; see, e.g., Mesfioui and Quessy
(2010) and Genest, Ne\v slehov\'a, and R\'emillard (2013).

In all the considerations above, \bfV \sim U
\bigl( 
[0,1]d

\bigr) 
independent of \bfX appears to be a good

choice. Let us denote this by \bfV \bot 
\bfX and the corresponding copula by C\bot 

\bfX , where \bot reflects that
independence is used twice to construct \bfV (within components of \bfV and between \bfV and \bfX ).
From the four motivating examples above, the choice of the particular copula C\bot 

\bfX is natural
and has several unique features. This choice has been known as the checkerboard copula.
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Definition 1. The copula C\bot 
\bfX is called the checkerboard copula of \bfX .

The copula C\bot 
\bfX is also called the multilinear extension copula of \bfX ; see Genest, Ne\v slehov\'a,

and R\'emillard (2017) for its properties, its empirical process, and a history. One notable
property is that X1, . . . ,Xd are independent if and only if C\bot 

\bfX is the independence copula.
The rest of the paper focuses on the properties and applications of the checkerboard copula.

4. Entropy maximization. Given the natural choice of C\bot 
\bfX in the applications in section 3,

it should have some unique properties within the class \scrC \bfX . The applications seem to suggest
that C\bot 

\bfX relies less on external information compared to other choices of\bfV . Such consideration
is typically studied via entropy. Indeed, as argued by Jaynes (1957), the maximum-entropy
distribution should be the only unbiased choice given the available information. If a copula
C has a density function c, then its Shannon (differential) entropy is defined as

H(C) = - 
\int 
[0,1]d

c(\bfu ) log c(\bfu )d\bfu .

One problem with the above formulation is that a copula C often does not have a density. We
set H(C) = - \infty if C does not have a density, which is intuitive and can be seen as a limiting
case; see Koliander et al. (2016) for a discussion on the definition of entropy for singular
distributions.

Remark 1. By definition, H(C) =  - D\mathrm{K}\mathrm{L}(PC\| PL), where D\mathrm{K}\mathrm{L}(PC\| PL) is the Kullback--
Leibler (KL) divergence between the probability measure PC with distribution function C
and the Lebesgue measure PL on [0,1]d. Since the KL divergence quantifies the similarity
between PC and PL via the likelihood ratio dPC/dPL, being singular is the extreme form of
nonsimilarity in terms of likelihood ratio. Therefore, it is natural to set D\mathrm{K}\mathrm{L}(PC\| PL) as \infty 
whenever PC is not absolutely continuous with respect to PL. This is a standard approach in
the literature on KL divergence and differential entropy; see, e.g., Csisz\'ar (1975) and Cover and
Thomas (1991). Hence, to keep the same intuition and consistency with the KL divergence,
we set H(C) = - \infty when C does not have density.

However, even the checkerboard copula C\bot 
\bfX may not have a density if the distribution of

\bfX has some singular continuous part. This issue may be solved by considering other measures
of information, but for now, let us stick to the Shannon entropy, which is the most popular
notion in information theory. We would like to compare H(C\bot 

\bfX ) with H(C) for C \in \scrC \bfX or,
equivalently, H(C\bfV 

\bfX ) for other choices of \bfV \in \scrV \bfX . The main result of this section is to show
that H(C\bot 

\bfX ) has the largest entropy among all other choices.

Theorem 2. For C \in \scrC \bfX , we have H(C\bot 
\bfX )\geqslant H(C).

The proof of Theorem 2 essentially boils down to showing the following lemma, which
states that the density of the checkerboard copula can be expressed as the conditional ex-
pectation for the density of other possible copulas in \scrC \bfX . From this lemma and Jensen's
inequality, Theorem 2 follows.

Lemma 1. For C \in \scrC \bfX , if the density c of C exists, then the density c\bot of C\bot 
\bfX exists. More-

over, c\bot (\bfU ) = \BbbE [c(\bfU )| \^\bfX ], where \bfU = (U1, . . . ,Ud)\sim U
\bigl( 
[0,1]d

\bigr) 
, \^\bfX =

\bigl( 
F - 1
1 (U1), . . . , F

 - 1
d (Ud)

\bigr) 
,

and F1, . . . , Fd are the marginals of \bfX .
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 433

Proof. Since \BbbE [c(\bfU )| \^\bfX ] is \sigma ( \^\bfX )-measurable, there exists a function f : \BbbR d \rightarrow [0,1] such
that f( \^\bfX ) =\BbbE [c(\bfU )| \^\bfX ] (in the almost sure sense). Let c\bot be a function [0,1]d \rightarrow [0,1] defined
as c\bot (\bfu ) = f

\bigl( 
F - 1
1 (u1), . . . , F

 - 1
d (ud)

\bigr) 
for any \bfu = (u1, . . . , ud)\in [0,1]d. We claim that c\bot is the

density of C\bot 
\bfX . This claim implies that c\bot exists and that c\bot (\bfU ) =\BbbE [c(\bfU )| \^\bfX ].

To prove this claim, let \bfU c \sim C, \bfU \bot \sim C\bot 
\bfX , and R =\times d

i=1Ran(Fi). We first show that\int 
A c\bot (\bfu )d\bfu = \BbbP (\bfU \bot \in A) for the following two types of the set A.

(i) A=\times d
i=1[0, ai] with \bfa = (a1, . . . , ad) \in R. We have 1\{ \bfU \leqslant \bfa \} = 1\{ \^\bfX \leqslant (F - 1

1 (a1),...,F
 - 1
d (ad))\} .

Therefore, \int 
A
c\bot (\bfu )d\bfu =

\int 
\times d

i=1[0,ai]
f
\bigl( 
F - 1
1 (u1), . . . , F

 - 1
d (ud)

\bigr) 
du1 \cdot \cdot \cdot dud

=\BbbE 
\Bigl[ 
f( \^\bfX )1\{ \bfU \leqslant \bfa \} 

\Bigr] 
=\BbbE 

\Bigl[ 
\BbbE [c(\bfU )| \^\bfX ]1\{ \^\bfX \leqslant (F - 1

1 (a1),...,F
 - 1
d (ad))\} 

\Bigr] 
=\BbbE 

\bigl[ 
c(\bfU )1\{ \bfU \leqslant \bfa \} 

\bigr] 
= \BbbP (\bfU c \leqslant \bfa ) = \BbbP (\bfU \bot \leqslant \bfa ),

where the last equality holds because

\BbbP (\bfU c \leqslant \bfa ) = \BbbP 
\bigl( 
\bfX \leqslant 

\bigl( 
F - 1
1 (a1), . . . , F

 - 1
d (ad)

\bigr) \bigr) 
= \BbbP (\bfU \bot \leqslant \bfa ).

This further implies that
\int 
A c\bot (\bfu )d\bfu = \BbbP (\bfU \bot \in A) for any A =\times d

i=1Ai such that
Ai \in \{ [0, ai] : ai \in Ran(Fi)\} \cup \{ (Fi(xi - ), Fi(xi)] : xi is a discontinuity point of Fi\} for
i\in [d].

(ii) Let A = (\times k
i=1[0, ai])\times (\times d

j=k+1(sj , tj ]) with k \in \{ 0,1, . . . , d\} such that ai \in Ran(Fi)
for i \in [k] and (sj , tj ] \cap Ran(Fj) = \varnothing for j \in [d] \setminus [k]. For j \in [d] \setminus [k], denote by
xj = F - 1

j (sj), and thus (sj , tj ] \subseteq (Fj(xj - ), Fj(xj)). By the definition of c\bot , for fixed

ui \in [0, ai] and i \in [k], c\bot (u1, . . . , uk, vk+1, . . . , vd) is a constant for all (vk+1, . . . , vd) \in 
\times d

j=k+1(Fj(xj - ), Fj(xj)). Therefore, letB = (\times k
i=1[0, ai])\times (\times d

j=k+1(Fj(xj - ), Fj(xj))).
We have \int 

A
c\bot (\bfu )d\bfu =

\left(  d\prod 
j=k+1

tj  - sj
Fj(xj) - Fj(xj - )

\right)  \int 
B
c\bot (\bfu )d\bfu .

Let \bfV = (V1, . . . , Vd)\sim U
\bigl( 
[0,1]d

\bigr) 
be independent of \bfX , and for j \in [d] \setminus [k], denote by

s\prime j = (sj  - Fj(xj - ))/(Fj(xj) - Fj(xj - )) and t\prime j = (tj  - Fj(xj - ))/(Fj(xj) - Fj(xj - )).
Hence,

d\prod 
j=k+1

tj  - sj
Fj(xj) - Fj(xj - )

= \BbbP 
\bigl( 
Vj \in (s\prime j , t

\prime 
j ] for all j \in [d] \setminus [k]

\bigr) 
.

In addition, by (i), we can get\int 
B
c\bot (\bfu )d\bfu = \BbbP (\bfU \bot \in B) = \BbbP 

\bigl( 
Xi \leqslant F - 1(ai), Xj = xj for all i\in [k], j \in [d] \setminus [k]

\bigr) 
.
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Therefore,

\int 
A
c\bot (\bfu )d\bfu = \BbbP 

\left(  \bigcap 
j\in [d]\setminus [k]

\{ Vj \in (s\prime j , t
\prime 
j ]\} 

\right)  \BbbP 

\left(  \bigcap 
i\in [k],j\in [d]\setminus [k]

\{ Xi \leqslant F - 1(ai), Xj = xj\} 

\right)  
= \BbbP 

\left(  \bigcap 
i\in [k],j\in [d]\setminus [k]

\bigl\{ 
Xi \leqslant F - 1(ai), Xj = xj , Vi \in [0,1], Vj \in (s\prime j , t

\prime 
j ]
\bigr\} \right)  

= \BbbP 

\Biggl( 
\bfU \bot \in 

\Biggl( 
k

\times 
i=1

[0, ai]

\Biggr) 
\times 

\Biggl( 
d

\times 
j=k+1

(sj , tj ]

\Biggr) \Biggr) 
= \BbbP (\bfU \bot \in A).

By the same argument, we have
\int 
A c\bot (\bfu )d\bfu = \BbbP (\bfU \bot \in A) for any A =\times d

i=1Ai such
that Ai \in \{ [0, ai] : ai \in Ran(Fi)\} \cup \{ (si, ti] : (si, ti]\cap Ran(Fi) =\varnothing \} for i\in [d].

For any \bfa = (a1, . . . , ad)\in [0,1]d, the region\times d
i=1[0, ai] can always be represented by an at

most countable disjoint union of regions studied in (i) and (ii). Hence, we can obtain\int 
\times d

i=1[0,ai]
c\bot (\bfu )d\bfu = \BbbP (\bfU \bot \leqslant \bfa ).

This proves our claim that c\bot is the density of C\bot 
\bfX .

Proof of Theorem 2. If H(C) =  - \infty , then there is nothing to show. Hence, it suffices
to consider the case that C has a density, which we denote by c. By Lemma 1, we have
c\bot (\bfU ) = \BbbE [c(\bfU )| \^\bfX ], where c\bot is the density of C\bot 

\bfX , \bfU = (U1, . . . ,Ud) \sim U
\bigl( 
[0,1]d

\bigr) 
, and \^\bfX =\bigl( 

F - 1
1 (U1), . . . , F

 - 1
d (Ud)

\bigr) 
with F1, . . . , Fd as the marginals of \bfX . Define a function g(x) = x logx

for x \in (0,\infty ). It is clear that g is convex. By the fact that \BbbE [c(\bfU )| \^\bfX ] = c\bot (\bfU ) and Jensen's
inequality, we have

H(C\bot 
\bfX ) = - \BbbE [g(c\bot (\bfU ))] = - \BbbE [g(\BbbE [c(\bfU )| \^\bfX ])]\geqslant  - \BbbE [\BbbE [g(c(\bfU ))| \^\bfX ]] = - \BbbE [g(c(\bfU ))] =H(C).

Thus, H(C\bot 
\bfX )\geqslant H(C) for all C \in \scrC \bfX .

Theorem 2 demonstrates that the entropy of C\bfX cannot be greater than C\bot 
\bfX . This result

is related to those of Piantadosi, Howlett, and Borwein (2012) and Kuzmenko, Salam, and
Uryasev (2020), and the difference is that, in Theorem 2, we fix a joint (possibly discrete)
distribution and seek to find the copula consistent with this distribution that maximizes the
entropy, which is the checkerboard copula. In contrast, Piantadosi, Howlett, and Borwein
(2012) and Kuzmenko, Salam, and Uryasev (2020) do not fix a joint distribution. Instead,
they search for a checkerboard copula that maximizes the entropy subject to matching either
a correlation coefficient or the distribution of the sum of random variables. Therefore, the
problems they address are different from our Theorem 2.

When C\bfX and C\bot 
\bfX contain singular components, by definition, H(C\bfX ) = H(C\bot 

\bfX ) =  - \infty .
In this case, the next proposition shows that the entropy for the absolutely continuous part
of C\bot 

\bfX is still greater than that for the absolutely continuous part of C\bfX .
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 435

Proposition 1. Assume that C\bfX \in \scrC \bfX such that C\bfX = \lambda G\mathrm{A}+(1 - \lambda )G\mathrm{S}, where \lambda \in [0,1], G\mathrm{A}

is an absolutely continuous distribution function and G\mathrm{S} is a singular distribution function.
Then there exists an absolutely continuous distribution function G\bot 

\mathrm{A} and a distribution function
G\bot 

\mathrm{S} such that C\bot 
\bfX = \lambda G\bot 

\mathrm{A} + (1 - \lambda )G\bot 
\mathrm{S} and H(G\bot 

\mathrm{A})\geqslant H(G\mathrm{A}).

Proof. Let F1, . . . , Fd be the marginal distributions of \bfX . For x\in [0,1], let li(x) = sup\{ y :
y \in Ran(Fi), y\leqslant x\} and ui(x) = inf\{ y : y \in Ran(Fi), y\geqslant x\} . Define two distribution functions
G\bot 

\mathrm{A} and G\bot 
\mathrm{S} , which are linear interpolations of G\mathrm{A} and G\mathrm{S} from\times d

i=1Ran(Fi) to [0,1]d: For
\bfx = (x1, . . . , xd)\in [0,1]d,

G\bot 
\mathrm{A}(\bfx ) =

\left\{               

G\mathrm{A}(\bfx ), \bfx \in 
d

\times 
i=1

Ran(Fi),

\sum 
yi\in \{ li(xi),ui(xi)\} 

i\in [d]

d\prod 
j=1

\beta j(xj , yj)G\mathrm{A}(y1, . . . , yd), \bfx \in [0,1]d \setminus 
d

\times 
i=1

Ran(Fi),

and

G\bot 
\mathrm{S} (\bfx ) =

\left\{               

G\mathrm{S}(\bfx ), \bfx \in 
d

\times 
i=1

Ran(Fi),

\sum 
yi\in \{ li(xi),ui(xi)\} 

i\in [d]

d\prod 
j=1

\beta j(xj , yj)G\mathrm{S}(y1, . . . , yd), \bfx \in [0,1]d \setminus 
d

\times 
i=1

Ran(Fi),

where

\beta i(x, y) =
ui(x) - x

ui(x) - li(x)
1\{ y=li(x)\} +

x - li(x)

ui(x) - li(x)

\bigl( 
1 - 1\{ y=li(x)\} 

\bigr) 
for x, y \in [0,1] and i \in [d] with the convention 0/0 = 1. Note that \beta i(x, y) is linear in x on
each segment of [0,1] \setminus Ran(Fi). It is clear that G

\bot 
\mathrm{A} is continuous.

Let g\mathrm{A} be the density of G\mathrm{A} and g be the derivative of G\bot 
\mathrm{A}, respectively. For \bfx \in 

\times d
i=1Ran(Fi), we have

g(\bfx ) =
\partial dG\bot 

\mathrm{A}(\bfx )

\partial x1 \cdot \cdot \cdot \partial xd
=

\partial dG\mathrm{A}(\bfx )

\partial x1 \cdot \cdot \cdot \partial xd
= g\mathrm{A}(\bfx ).

For \bfx = (x1, . . . , xd - 1, xd) such that xi \in Ran(Fi) for i\in [d - 1] and xd /\in Ran(Fd), we have

G\bot 
\mathrm{A}(\bfx ) =

ud(xd) - xd
ud(xd) - ld(xd)

G\mathrm{A}(x1, . . . , xd - 1, ld(xd)) +
xd  - ld(xd)

ud(xd) - ld(xd)
G\mathrm{A}(x1, . . . , xd - 1, ud(xd)).

Hence,

g(\bfx ) =
\partial dG\bot 

\mathrm{A}(\bfx )

\partial x1 \cdot \cdot \cdot \partial xd

=
\partial d - 1[G\mathrm{A}(x1, . . . , xd - 1, ud(xd)) - G\mathrm{A}(x1, . . . , xd - 1, ld(xd))]

\partial x1 \cdot \cdot \cdot \partial xd - 1

=

\int ud(xd)

ld(xd)
g\mathrm{A}(x1, . . . , xd - 1, y)dy.
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436 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

Let k \in [d]. Similarly, for \bfx = (x1, . . . , xd) such that xi \in Ran(Fi) for i \in [k - 1] (with [0] =\varnothing )
and xi /\in Ran(Fi) for i\in [d] \setminus [k - 1], we have

g(\bfx ) =

\int uk(xk)

lk(xk)
. . .

\int ud(xd)

ld(xd)
g\mathrm{A}(x1, . . . , xk - 1, yk, . . . , yd)dyk \cdot \cdot \cdot dyd.

Note that ui(xi) = Fi(F
 - 1
i (xi)) and that li(xi) = Fi(F

 - 1
i (xi) - ) for i\in [d]. From the discussion

above, we can see that g(\bfx ) is a constant in\times d
i=1[Fi(yi - ), Fi(yi)] for all \bfy = (y1, . . . , yd) \in 

\BbbR d. Let \bfU = (U1, . . . ,Ud) \sim U([0,1]d), and let \^\bfX =
\bigl( 
F - 1
1 (U1), . . . , F

 - 1
d (Ud)

\bigr) 
. Thus, g(\bfU ) =

\BbbE [g\mathrm{A}(\bfU )| \^\bfX ]. Hence, g is Lebesgue integrable, and G\bot 
\mathrm{A} is an absolutely continuous distribution

function with density function g\bot \mathrm{A} = g.

Next, we show that C\bot 
\bfX = \lambda G\bot 

\mathrm{A} + (1 - \lambda )G\bot 
\mathrm{S} and H(G\bot 

\mathrm{A})\geqslant H(G\mathrm{A}). For \bfx \in \times d
i=1Ran(Fi),

\lambda G\bot 
\mathrm{A}(\bfx ) + (1 - \lambda )G\bot 

\mathrm{S} (\bfx ) = \lambda G\mathrm{A}(\bfx ) + (1 - \lambda )G\mathrm{S}(\bfx ) =C\bfX (\bfx ) =C\bot 
\bfX (\bfx ).

For \bfx \in [0,1]d \setminus \times d
i=1Ran(Fi),

\lambda G\bot 
\mathrm{A}(\bfx ) + (1 - \lambda )G\bot 

\mathrm{S} (\bfx ) =
\sum 

yi\in \{ li(xi),ui(xi)\} 
i\in [d]

d\prod 
j=1

\beta (xj , yj) (\lambda G\mathrm{A}(y1, . . . , yd) + (1 - \lambda )G\mathrm{S}(y1, . . . , yd))

=
\sum 

yi\in \{ li(xi),ui(xi)\} 
i\in [d]

d\prod 
j=1

\beta (xj , yj)C\bfX (y1, . . . , yd) =C\bot 
\bfX (\bfx ).

Let h(x) =  - x logx for x \in (0,\infty ). It is clear that h is a concave function. By Jensen's
inequality, we have

H(G\bot 
\mathrm{A}) =\BbbE [h(g\bot \mathrm{A}(\bfU ))] =\BbbE [h(\BbbE [g\mathrm{A}(\bfU )| \^\bfX ])]\geqslant \BbbE [\BbbE [h(g\mathrm{A}(\bfU ))| \^\bfX ]] =\BbbE [h(g\mathrm{A}(\bfU ))] =H(G\mathrm{A}).

This completes the proof.

5. Checkerboard copula and dependence concepts. In this section, we study how the
checkerboard copula preserves dependence concepts. This question is motivated by a problem
raised in the context of diversification in Chen, Embrechts, and Wang (2024b), which we
describe in section 6.1.

5.1. Dependence concepts. We first define several notions of positive dependence,
introduced and studied by Lehmann (1966), Esary, Proschan, and Walkup (1967), and Ben-
jamini and Yekutieli (2001), and the corresponding notions of negative dependence, intro-
duced and studied by Lehmann (1966), Alam and Saxena (1981), Block, Savits, and Shaked
(1982, 1985), Joag-Dev and Proschan (1983), and Chen, Embrechts, and Wang (2024a).

In what follows, for i \in [d] and a d-dimensional random vector \bfX = (X1, . . . ,Xd), write
\bfX  - i = (X1, . . . ,Xi - 1,Xi+1, . . . ,Xd), and for A,B \subseteq [d], write \bfX A = (Xk)k\in A and \bfX B =
(Xk)k\in B. A set S \subseteq \BbbR d is decreasing if \bfx \in S implies that \bfy \in S for all \bfy \leqslant \bfx .
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 437

Definition 2. A random vector \bfX is
(i) (a) positively associated (PA) if for every pair of subsets A,B of [d] and any functions

f and g both increasing or decreasing coordinatewise, provided that the covariance
below exists,

Cov(f(\bfX A), g(\bfX B))\geqslant 0;

(b) negatively associated (NA) if for every pair of disjoint subsets A,B of [d] and
any functions f and g both increasing or decreasing coordinatewise, provided that
the covariance below exists,

Cov(f(\bfX A), g(\bfX B))\leqslant 0;

(ii) (a) positively regression dependent (PRD) if for every i \in [d], the random variable
\BbbE [g(\bfX  - i)| Xi] is an increasing function of Xi for any coordinatewise increasing
function g such that the conditional expectation exists;

(b) negatively regression dependent (NRD) if for every i \in [d], the random variable
\BbbE [g(\bfX  - i)| Xi] is a decreasing function of Xi for any coordinatewise increasing
function g such that the conditional expectation exists;

(iii) (a) weakly positively associated (WPA) if for any i \in [d], decreasing set S \subseteq \BbbR d - 1,
and x\in \BbbR with \BbbP (Xi \leqslant x)> 0,

\BbbP (\bfX  - i \in S | Xi \leqslant x)\geqslant \BbbP (\bfX  - i \in S);

(b) weakly negatively associated (WNA) if for any i \in [d], decreasing set S \subseteq \BbbR d - 1,
and x\in \BbbR with \BbbP (Xi \leqslant x)> 0,

\BbbP (\bfX  - i \in S | Xi \leqslant x)\leqslant \BbbP (\bfX  - i \in S);

(iv) (a) positively orthant dependent (POD) if for all \bfx = (x1, . . . , xd) \in \BbbR d, \BbbP (\bfX \leqslant \bfx )\geqslant \prod d
i=1 \BbbP (Xi \leqslant xi) and \BbbP (\bfX > \bfx )\geqslant 

\prod d
i=1 \BbbP (Xi >xi);

(b) negatively orthant dependent (NOD) if for all \bfx = (x1, . . . , xd)\in \BbbR d, \BbbP (\bfX \leqslant \bfx )\leqslant \prod d
i=1 \BbbP (Xi \leqslant xi) and \BbbP (\bfX > \bfx )\leqslant 

\prod d
i=1 \BbbP (Xi >xi).

Moreover, we say that a distribution or a copula is PA, PRD, WPA, POD, NA, NRD,
WNA, or NOD if the corresponding random vector is.

Note that the definition of PA does not require A and B to be disjoint, whereas the
definition of NA requires this.

The relationship between the above notions is summarized below (see e.g., Chen, Em-
brechts, and Wang (2024a)):

PA=\Rightarrow WPA, PRD=\Rightarrow WPA, WPA=\Rightarrow POD,

NA=\Rightarrow WNA, NRD=\Rightarrow WNA, WNA=\Rightarrow NOD.

Within the class of multivariate normal distributions, the four concepts of positive dependence
are equivalent, and each is equivalent to having nonnegative bivariate correlation coefficients;
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438 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

similarly, the four concepts of negative dependence are equivalent, and each is equivalent to
having nonpositive bivariate correlation coefficients.

In the following, we use \frakD to represent one of the following: PA, PRD, WPA, POD, NA,
NRD, WNA, or NOD. Our question is whether these properties are properties purely based
on copulas. It turns out that the checkerboard copula can help answer this question.

5.2. The checkerboard copula preserves dependence. We first present a self-consistency
property of those negative dependence concepts in the spirit of Joag-Dev and Proschan (1983,
Property P6) for NA.

Lemma 2. If f1, . . . , fd are increasing functions and \bfX satisfies \frakD , then (f1(X1), . . . , fd(Xd))
also satisfies \frakD .

Proof. We only show the result for the concepts of negative dependence, as the case of
positive dependence is similar.

The self-consistency properties of NA and NOD are shown in Joag-Dev and Proschan
(1983, Property P6) and Lehmann (1966, Lemma 1), respectively. We will show the properties
for NRD and WNA. Let \bfY = (f1(X1), . . . , fd(Xd)).

1. Assume that \bfX is NRD. Fix i\in [d]. Let g be a coordinatewise increasing function, and
let g\prime = g \circ (f1, . . . , fi - 1, fi+1, . . . , fd). As a result, we have that g\prime is a coordinatewise
increasing function and that g(\bfY  - i) = g\prime (\bfX  - i). For any y \in \BbbR , let Ay = \{ x : fi(x) = y\} .
We have \{ Yi = y\} = \{ Xi \in Ay\} . Therefore, \BbbE [g(\bfY  - i)| Yi = y] = \BbbE [g\prime (\bfX  - i)| Xi \in Ay].
Assume that y1 < y2. For any x1 \in Ay1

and x2 \in Ay2
, we have x1 \leqslant x2; hence,

\BbbE [g\prime (\bfX  - i)| Xi = x1]\geqslant \BbbE [g\prime (\bfX  - i)| Xi = x2]. Thus,

\BbbE [g\prime (\bfX  - i)| Xi \in Ay1
] =\BbbE [\BbbE [g\prime (\bfX  - i)| Xi]| Xi \in Ay1

]

\geqslant \BbbE [\BbbE [g\prime (\bfX  - i)| Xi]| Xi \in Ay2
] =\BbbE [g\prime (\bfX  - i)| Xi \in Ay2

],

which implies that \BbbE [g(\bfY  - i)| Yi = y1]\geqslant \BbbE [g(\bfY  - i)| Yi = y2]; hence, \bfY is NRD.
2. Assume that \bfX is WNA. For i\in [d], let S \subseteq \BbbR d - 1 be a decreasing set, and let

Sf
i = \{ (x1, . . . xi - 1, xi+1, . . . , xd) : (f1(x1), . . . , fi - 1(xi - 1), fi+1(xi+1), . . . , fd(xd))\in S\} .

It is clear that \{ \bfY  - i \in S\} = \{ \bfX  - i \in Sf
i \} . For any \bfx 1 \leqslant \bfx 2 and \bfx 2 \in Sf

i , we have
fk(x1,k)\leqslant fk(x2,k) for all k \in [d] \setminus \{ i\} . Furthermore, because S is decreasing, we have

\bfx 1 \in Sf
i , which implies that Sf

i is a decreasing set. For any y \in \BbbR with \BbbP (Yi \leqslant y)> 0,
let x = sup\{ t \in \BbbR : fi(t) \leqslant y\} . If fi(x) \leqslant y, then we have \{ Yi \leqslant y\} = \{ Xi \leqslant x\} and
\BbbP (Xi \leqslant x)> 0. Therefore,

\BbbP (\bfY  - i \in S| Yi \leqslant y) = \BbbP 
\Bigl( 
\bfX  - i \in Sf

i | Xi \leqslant x
\Bigr) 
\leqslant \BbbP 

\Bigl( 
\bfX  - i \in Sf

i

\Bigr) 
= \BbbP (\bfY  - i \in S),

which implies that \bfY is WNA. If fi(x) > y, then we have \{ Yi \leqslant y\} = \{ Xi < x\} and
\BbbP (Xi <x)> 0. Therefore,
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 439

\BbbP (\bfY  - i \in S,Yi \leqslant y) = \BbbP 
\Bigl( 
\bfX  - i \in Sf

i ,Xi <x
\Bigr) 

= lim
t\uparrow x

\BbbP 
\Bigl( 
\bfX  - i \in Sf

i ,Xi \leqslant t
\Bigr) 

\leqslant lim
t\uparrow x

\BbbP 
\Bigl( 
\bfX  - i \in Sf

i

\Bigr) 
\BbbP (Xi \leqslant t)

= \BbbP 
\Bigl( 
\bfX  - i \in Sf

i

\Bigr) 
lim
t\uparrow x

\BbbP (Xi \leqslant t)

= \BbbP 
\Bigl( 
\bfX  - i \in Sf

i

\Bigr) 
\BbbP (Xi <x) = \BbbP (\bfY  - i \in S)\BbbP (Yi \leqslant y),

which implies that \BbbP (\bfY  - i \in S| Yi \leqslant y)\leqslant \BbbP (\bfY  - i \in S) and that \bfY is WNA.

The following theorem demonstrates that the checkerboard copula of \bfX preserves the
dependence information of \bfX .

Theorem 3. A random vector \bfX satisfies \frakD if and only if it has a copula that satisfies \frakD .
Moreover, the copula can be chosen as the checkerboard copula C\bot 

\bfX .

Proof. The ``if"" part follows from Lemma 2 because, for \bfU = (U1, . . . ,Ud) following the
copula of \bfX that satisfies \frakD , we have that (X1, . . . ,Xd) =

\bigl( 
F - 1
1 (U1), . . . , F

 - 1
d (Ud)

\bigr) 
and that

F - 1
i is increasing for all i\in [d].

Now we show the ``only if"" part. Let \bfU = (U1, . . . ,Ud) be the random vector given by (4)
with \bfV = (V1, . . . , Vd)\sim U

\bigl( 
[0,1]d

\bigr) 
independent of \bfX . Hence, we have that \bfU \sim C\bot 

\bfX and that
C\bot 
\bfX is a copula of \bfX . Note that for any i \in [d], given Vi, we have that Ui is an increasing

function of Xi. Hence, by Lemma 2, \bfX satisfies \frakD implies that \bfU | \bfV also satisfies \frakD .
Assume that \bfX is NA. For any given pair of disjoint subsets A, B of [d] and any given

functions f and g both increasing or decreasing coordinatewise, we have

Cov(f(\bfU A), g(\bfU B)) =\BbbE [Cov(f(\bfU A), g(\bfU B)| \bfV )] + Cov (\BbbE [f(\bfU A)| \bfV ],\BbbE [g(\bfU B)| \bfV ])

\leqslant 0 +Cov (\BbbE [f(\bfU A)| \bfV A],\BbbE [g(\bfU B)| \bfV B]) = 0,

where the inequality follows from the fact that \bfU | \bfV is NA and the last equality follows from
the independence between \bfV A and \bfV B. Hence, \bfU is NA.

Assume that \bfX is NRD. For any fixed i and k, by (4), there exist x and v such that
\{ Ui = k\} = \{ Xi = x,Vi = v\} . Then for any coordinatewise increasing function g, by the
independence between Vi and (Xi,\bfU  - i), we have

\BbbE [g(\bfU  - i)| Ui = k] =\BbbE [g(\bfU  - i)| Xi = x,Vi = v] =\BbbE [g(\bfU  - i)| Xi = x].

Because \bfU  - i is a function of \bfX  - i and \bfV  - i, we can let h be the function such that g(\bfU  - i) =
h(\bfX  - i,\bfV  - i). Then due to the independence between \bfV  - i and \bfX ,

\BbbE [g(\bfU  - i)| Xi = x] =\BbbE [h(\bfX  - i,\bfV  - i)| Xi = x] =

\int 
[0,1]d - 1

\BbbE [h(\bfX  - i,\bfv  - i)| Xi = x]d\bfv  - i,

where \bfv  - i = (v1, . . . , vi - 1, vi+1, . . . , vd). Therefore, for any k1 \leqslant k2, there exist x1 and x2 such
that
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440 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

\BbbE [g(\bfU  - i)| Ui = k1] =

\int 
[0,1]d - 1

\BbbE [h(\bfX  - i,\bfv  - i)| Xi = x1]d\bfv  - i,

\BbbE [g(\bfU  - i)| Ui = k2] =

\int 
[0,1]d - 1

\BbbE [h(\bfX  - i,\bfv  - i)| Xi = x2]d\bfv  - i.

In addition, by (4), we must have x1 \leqslant x2. Note that given \bfv  - i, h(\bfX  - i,\bfv  - i) is a coordinatewise
increasing function of \bfX  - i. Hence, we have \BbbE [h(\bfX  - i,\bfv  - i)| Xi = x1]\geqslant \BbbE [h(\bfX  - i,\bfv  - i)| Xi = x2]
for any \bfv  - i. Therefore, \BbbE [g(\bfU  - i)| Ui = k1]\geqslant \BbbE [g(\bfU  - i)| Ui = k2], and \bfU is NRD.

Assume that \bfX is WNA. For any i \in [d], decreasing set S \subseteq \BbbR d - 1, and x \in \BbbR with
\BbbP (Ui \leqslant x)> 0,

\BbbP (\bfU  - i \in S,Ui \leqslant x) =\BbbE [\BbbP (\bfU  - i \in S,Ui \leqslant x | \bfV )]

\leqslant \BbbE [\BbbP (\bfU  - i \in S| \bfV  - i)\BbbP (Ui \leqslant x | Vi)]

=\BbbE [\BbbP (\bfU  - i \in S| \bfV  - i)]\BbbE [\BbbP (Ui \leqslant x | Vi)]

= \BbbP (\bfU  - i \in S)\BbbP (Ui \leqslant x).

Hence, \bfU is WNA.
Assume that \bfX is NOD. For any t1, . . . , td \in \BbbR , we have

\BbbP (U1 \leqslant t1, . . . ,Ud \leqslant td) =\BbbE [\BbbP (U1 \leqslant t1, . . . ,Ud \leqslant td| V1, . . . , Vd)]

\leqslant \BbbE [\BbbP (U1 \leqslant t1| V1) \cdot \cdot \cdot \BbbP (Ud \leqslant td| Vd)]

=\BbbE [\BbbP (U1 \leqslant t1| V1)] \cdot \cdot \cdot \BbbE [\BbbP (Ud \leqslant td| Vd)]

= \BbbP (U1 \leqslant t1) \cdot \cdot \cdot \BbbP (Ud \leqslant td).

Similarly, we can show that

\BbbP (U1 > t1, . . . ,Ud > td)\leqslant \BbbP (U1 > t1) \cdot \cdot \cdot \BbbP (Ud > td).

Hence, \bfU is NOD.
In conclusion, if \bfX satisfies \frakD , then \bfU satisfies \frakD , where \frakD is one of the four concepts of

negative dependence.
To show the case of positive dependence, we follow a similar route. We take the same \bfU 

as above. Assume that \bfX is PA. Because Ui| Vi is an increasing function of Xi, by Lemma 2,
\bfU | \bfV is also PA. Thus, for any given pair of subsets A,B of [d] and any given functions f and
g both coordinatewise increasing or decreasing, we have

Cov(f(\bfU A), g(\bfU B)) =\BbbE [Cov(f(\bfU A), g(\bfU B)| \bfV )] + Cov (\BbbE [f(\bfU A)| \bfV ],\BbbE [g(\bfU B)| \bfV ])

\geqslant Cov (\BbbE [f(\bfU A)| \bfV A],\BbbE [g(\bfU B)| \bfV B]) .

Moreover, given \bfX , Ui is an increasing function of Vi. Hence, \BbbE [f(\bfU A)| \bfV A] and \BbbE [f(\bfU B)| \bfV B]
are coordinatewise increasing (or decreasing) with respect to \bfV A and \bfV B, respectively, if f
and g are both coordinatewise increasing (or decreasing). Because \bfV is PA, we have

Cov (\BbbE [f(\bfU A)| \bfV A],\BbbE [g(\bfU B)| \bfV B])\geqslant 0,
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 441

implying that \bfU is PA. The proofs for other positive dependence concepts are similar. A
partial proof for POD can also be found in Durante et al. (2015, Proposition 2.3).

Genest and Ne\v slehov\'a (2007) also show the dependence preservation results for positive
orthant dependence, positive likelihood ratio dependence, and tail dependence in the bivariate
case.

Remark 2. We can clearly see from Theorem 3 that C\bot 
\bfX =\Pi (the independence copula) is

the only independent copula in \scrC \bfX when \bfX is independent. This fact is used as the basis of
the independence test in Genest et al. (2019).

6. Two consequences of Theorem 3. We provide two applications in this section to
highlight the usefulness of Theorem 3.

6.1. Diversification penalty. For random variablesX and Y , letX \geqslant \mathrm{s}\mathrm{t} Y represent \BbbP (X >
x) \geqslant \BbbP (Y > x) for all x \in \BbbR ; this is called the stochastic order. Chen, Embrechts, and Wang
(2024a, 2024b) studied the problem of diversification penalty, that is, whether

X \leqslant \mathrm{s}\mathrm{t}

d\sum 
i=1

\theta iXi for all (\theta 1, . . . , \theta d)\in \Delta d, where X,X1, . . . ,Xd are identically distributed,(5)

holds under certain marginal distributions and dependence structures. Here \Delta d is the standard
simplex defined by \Delta d = \{ (\theta 1, . . . , \theta d) \in [0,1]d : \theta 1 + \cdot \cdot \cdot + \theta d = 1\} . When X is interpreted as
a loss, (5) intuitively means that the nondiversified portfolio X is less dangerous than the
diversified portfolio

\sum d
i=1 \theta iXi. This seems counterintuitive at first glance, but it indeed

happens in the model of Chen, Embrechts, and Wang (2024a), where X has infinite mean.
Define the set, for some dependence concept \frakD in section 5.1,

\scrF \frakD = \{ distribution of X : (5) holds for all (X1, . . . ,Xd) that satisfy \frakD \} .

Chen, Embrechts, and Wang (2024a) showed that the Pareto(1) distribution belongs to \scrF \mathrm{W}\mathrm{N}\mathrm{A}

and hence also to \scrF \mathrm{N}\mathrm{A}, \scrF \mathrm{N}\mathrm{R}\mathrm{D}, and \scrF \mathrm{I}\mathrm{N}, where IN stands for independence. Moreover, Chen,
Embrechts, and Wang (2024b, Proposition 1) showed that \scrF \frakD for \frakD being WNA, NA, or
IN is closed under strictly increasing convex transforms on the random variables. Our next
result, which relies on our Theorem 3, addresses non--strictly increasing f and other notions
of dependence, thus generalizing the above result.

Proposition 2. Each of \scrF \frakD is closed under increasing convex transforms on the random
variable.

Proof. Below we first show that each of \scrF \frakD is closed under strictly increasing convex
transforms on the random variable; that is, if the distribution of X is in \scrF \frakD , then so is the
distribution of f(X) for a strictly increasing convex f . Assume that F \in \scrF \frakD , X follows F and
that Y = f(X), where f is strictly increasing and convex. Because f is strictly increasing, if
(Y1, . . . , Yd) satisfies \frakD , then so does (X1, . . . ,Xd), where Xi = f - 1(Yi) for i\in [d], by Lemma 2.
Because each of X,X1, . . . ,Xd has a distribution F \in \scrF \frakD , we have X \leqslant \mathrm{s}\mathrm{t}

\sum d
i=1 \theta iXi, and this

gives, using the convexity of f ,
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442 L. LIN, R. WANG, R. ZHANG, AND C. ZHAO

Y = f(X)\leqslant \mathrm{s}\mathrm{t} f

\Biggl( 
d\sum 

i=1

\theta iXi

\Biggr) 
\leqslant 

d\sum 
i=1

\theta if(Xi) =

d\sum 
i=1

\theta iYi.(6)

To address the case that f is not strictly increasing, Theorem 3 allows us to find the
above (X1, . . . ,Xd) that satisfies \frakD and such that Yi = f(Xi) for i \in [d]. In particular,
using Theorem 3, we can construct (U1, . . . ,Ud), which follows the checkerboard copula of
(Y1, . . . , Yd) and satisfies \frakD such that

(Y1, . . . , Yd) = (f \circ g(U1), . . . , f \circ g(Ud)),

where g is the quantile function of X and f \circ g is the quantile function of Y . Setting
(X1, . . . ,Xd) = (g(U1), . . . , g(Ud)), we get that (X1, . . . ,Xd) satisfies \frakD , and this leads to (6).

6.2. Induced order statistics. Here we demonstrate another application of Theorem 3
in characterizing the distribution of induced order statistics. Consider N independent and
identically distributed bivariate random vectors\biggl( 

\xi 1
\eta 1

\biggr) 
,

\biggl( 
\xi 2
\eta 2

\biggr) 
, . . . ,

\biggl( 
\xi N
\eta N

\biggr) 
.

Note that for i \not = j, (\xi i, \eta i) and (\xi j , \eta j) are independent and identically distributed but that \xi i
and \eta i may be correlated and have different marginal distributions. We rank these bivariate
vectors according to their first components, \xi i,\biggl( 

\xi 1:N
\eta [1:N ]

\biggr) 
,

\biggl( 
\xi 2:N
\eta [2:N ]

\biggr) 
, . . . ,

\biggl( 
\xi N :N

\eta [N :N ]

\biggr) 
,(7)

where \xi 1:N \leqslant \xi 2:N \leqslant \cdot \cdot \cdot \leqslant \xi N :N are the order statistics of \xi 1, \xi 2, . . . , \xi N . The notation \eta [i:N ]

represents the ith induced order statistic (Bhattacharya (1974)), where the order is induced
by another variable \xi i. The induced order statistics \eta [1:N ], . . . , \eta [N :N ] are also referred to as
concomitants of the order statistics \xi 1:N , . . . , \xi N :N (David (1973)).

In the context of constructing impact portfolios, Lo et al. (2024) investigated the joint
distribution of (\eta [1:N ], . . . , \eta [N :N ]). In particular, they proved a representation theorem for
the joint distribution of (\eta [1:N ], . . . , \eta [N :N ]) using the copula of (\xi i, \eta i). Furthermore, they
demonstrated that if \xi i is not continuously distributed, then the representation theorem holds
if and only if the copula of (\xi i, \eta i) is chosen as the (bivariate) checkerboard copula in this paper.
This reveals a potential application of the checkerboard copula in portfolio construction.

Lo et al. (2024) also showed that the rank of the odd-order moments of induced order
statistics relies on the copula of (\xi i, \eta i). Assume that C is a copula of (\xi i, \eta i). Lo et al. (2024,
Theorem EC.5) proved that for any k= 0,1, . . . , if C is PRD, then we have

\BbbE 
\Bigl( 
\eta 2k+1
[1:N ]

\Bigr) 
\leqslant \BbbE 

\Bigl( 
\eta 2k+1
[2:N ]

\Bigr) 
\leqslant \cdot \cdot \cdot \leqslant \BbbE 

\Bigl( 
\eta 2k+1
[N :N ]

\Bigr) 
,(8)

and if C is NRD, then we have

\BbbE 
\Bigl( 
\eta 2k+1
[1:N ]

\Bigr) 
\geqslant \BbbE 

\Bigl( 
\eta 2k+1
[2:N ]

\Bigr) 
\geqslant \cdot \cdot \cdot \geqslant \BbbE 

\Bigl( 
\eta 2k+1
[N :N ]

\Bigr) 
.(9)

In particular, the copula C can be chosen as the checkerboard copula. Therefore, using
Theorem 3, we directly obtain the following result.
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THE CHECKERBOARD COPULA AND DEPENDENCE CONCEPTS 443

Proposition 3. For any k = 0,1, . . . , (8) holds if (\xi i, \eta i) is PRD, and (9) holds if (\xi i, \eta i) is
NRD.

The difference between Proposition 3 and Lo et al. (2024, Theorem EC.5) is that the
latter imposes the dependence assumption (PRD or NRD) on the copula of (\xi i, \eta i), while the
former imposes a more natural assumption on the random vector (\xi i, \eta i) directly, which is
only possible due to our Theorem 3.

7. Applications in corisk measures and portfolio selection. In this section, we use both
numerical and empirical experiments to show that the choice of copula impacts the calculation
of corisk measures when the marginal distributions are not continuous. In particular, we
consider marginal ES as defined in (1), which is discussed in our third motivating question in
section 1. Section 7.1 presents a numerical experiment to show that different copula choices
can lead to varying marginal ES results. Section 7.2 uses real data from the U.S. stock
market to illustrate how the choice of copula affects the performance of the portfolio with
minimum marginal ES. Our results not only highlight the importance of copula selection in
the computation of corisk measures in financial practice but also show that the checkerboard
copula is often the most convenient and natural choice that can produce reliable results.

7.1. Numerical experiment. Consider a bivariate normal distribution with marginals
N(0, \sigma 2) and correlation r. Denote this bivariate distribution by Fr. We choose this dis-
tribution because it is well known that for (X1,X2)\sim Fr, the marginal ES of X2 given X1 at
level p\in (0,1) can be explicitly computed as

\rho (X2| X1) =\BbbE [X2| X1 >\Phi  - 1(p)] =
r\sigma 

1 - p
\varphi 
\bigl( 
\Phi  - 1(p)

\bigr) 
,(10)

where \varphi and \Phi are the density and distribution functions of N(0,1), respectively.
Now we conduct a numerical experiment based on this bivariate normal distribution.

We draw 1,000 bivariate random vectors, (X
(1)
1 ,X

(1)
2 ), . . . , (X

(1,000)
1 ,X

(1,000)
2 ), from Fr. These

random values are then rounded to one decimal place to estimate an empirical bivariate
distribution, denoted by \^F . Thus, \^F is a discrete bivariate distribution on the discrete grid
caused by rounding. Next, assuming that ( \^X1, \^X2) \sim \^F , we compute the marginal ES of \^X2

given \^X1 at level p\in (0,1), which is \rho ( \^X2| \^X1) defined as (1). When calculating the marginal
ES, the following two copulas of ( \^X1, \^X2) given by (4) are considered:

(i) Let (V1, V2) \sim U
\bigl( 
[0,1]2

\bigr) 
be independent of ( \^X1, \^X2); that is, use the checkerboard

copula C\bot .
(ii) Let V2 \sim U[0,1] be independent of \^X2. In addition, given \^X2, let V2 and \^X1 be

comonotonic. Let V1 \sim U[0,1] be independent of \^X1, \^X2, and V2. We denote this
copula by C+.

Therefore, we obtain different values of \rho ( \^X2| \^X1) using the two different copulas.
Given (r, p), we run the simulation procedure described above 10,000 times and calculate

the marginal ES under both copulas for each run. We choose \sigma = 10. Table 1 shows the
marginal ES given by (10) (normal formula), the average marginal ES value, and the mean
squared error (MSE)---the mean squared difference between \rho ( \^X2| \^X1) and the value in (10)---
across the 10,000 runs for each of the two copulas.
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Table 1
Simulation results for computing marginal ES under two copulas.

p= 0.9 p= 0.95 p= 0.975

\rho 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

Normal formula 3.510 5.265 7.020 4.125 6.188 8.251 4.676 7.013 9.351

Average with C\bot 3.502 5.257 7.001 4.116 6.171 8.234 4.688 6.992 9.330
Average with C+ 3.985 5.730 7.455 4.687 6.726 8.767 5.338 7.615 9.934

MSE with C\bot 0.940 0.920 0.891 1.914 1.796 1.673 3.725 3.636 3.329
MSE with C+ 1.225 1.192 1.131 2.348 2.173 2.020 4.357 4.187 3.796

Table 2
Marginal ES of the loss of five individual stocks given the loss of the S\&P 500 Index.

Microsoft Apple Google Nvidia Amazon

C\bot 3.518\% 3.545\% 3.455\% 5.043\% 3.712\%
C+ 4.404\% 4.752\% 4.523\% 6.686\% 4.998\%

Empirical distribution 3.845\% 3.905\% 3.735\% 5.456\% 4.054\%

Table 1 illustrates that the choice of copula affects the calculation of the marginal ES.
Under our setup, the marginal ES computed using the checkerboard copula is, on average,
closer to the result obtained using the normal formula (10). This demonstrates that the
checkerboard copula is a good candidate for computing corisk measures for noncontinuous
random variables.

7.2. Empirical study. To further demonstrate the importance of copula selection when
computing corisk measures in financial practice, we use real stock data to calculate the mar-
ginal ES. We obtain daily returns of the S\&P 500 Index and five widely traded U.S. stocks---
Microsoft, Apple, Google, Nvidia, and Amazon---from 2005 to 2023.2 To make the distribution
discrete, we classify market conditions into five groups based on the daily returns of the S\&P
500 Index: ( - \infty , - 3\%], ( - 3\%, - 1\%], ( - 1\%,+1\%], (+1\%,+3\%], and (+3\%,+\infty ). These five
conditions represent very bad, bad, fair, good, and very good, with corresponding values of
 - 2,  - 1, 0, +1, and +2, respectively.

Next, for each individual stock, we use the negative values of its daily returns along
with these market condition values over the entire period to estimate an empirical bivariate
distribution. Then based on the empirical bivariate distribution, the two copulas described
in section 7.1 are applied to calculate the marginal ES of the stock's loss given the market
condition. We also present results computed using the empirical bivariate distributions of daily
stock returns and S\&P 500 Index returns directly, without classifying the market conditions.

Table 2 shows the marginal ES of the five stocks under the two copulas, along with the
result computed directly from the empirical distributions. The marginal ES values differ across
the three methods, and the results from the checkerboard copula, C\bot , are lower than those
from the alternative copula, C+.

2Our data come from the Center for Research in Security Prices (CRSP). We use data starting in 2005
because Google became publicly traded in August 2004.
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Figure 1. Cumulative values of the minMES portfolios.

Table 3
Performance metrics (average annual returns, standard deviation of annual returns, and Sharpe ratio) for

the minMES portfolios. The Sharpe ratio is calculated assuming a risk-free rate of 3\%.

Metrics Average return Standard deviation Sharpe ratio

C\bot 22.34\% 29.89\% 0.6470
C+ 19.73\% 27.65\% 0.6050

Empirical distribution 20.11\% 29.92\% 0.5721

Different choices of copulas can also result in varying financial performance for the portfolio
with minimum marginal ES (minMES). To demonstrate this, we construct minMES portfolios
for the five stocks as follows. At the beginning of year t, we determine the weights of the five
stocks that minimize the marginal ES of the portfolio's loss given the market condition, using
data from year t - 1. The optimization is subject to the constraints that all weights must be
nonnegative and sum to 1. These optimal weights are then held throughout year t.

Figure 1 and Table 3 show the cumulative portfolio values and performance metrics of
this minMES strategy for p = 0.975 under the three methods over the entire sample period,
respectively. We find that the choice of copula significantly impacts the financial performance
of the minMES portfolio. Furthermore, in our empirical study, the checkerboard copula
generally achieves better performance, demonstrating that it is a convenient and effective
choice for producing reliable results for the considered dataset. Certainly, we do not claim
that this advantage is profitable in general, which requires comprehensive empirical analysis.

8. Conclusion. We discussed the choice of copula when the marginal distributions are
not necessarily continuous. Among all the choices of copulas for a given random vector, the
checkerboard copula is the most convenient and natural selection in applications such as sim-
ulating from the copula, stressing the distribution, and computing a corisk measure. It is
shown that the checkerboard copula is the most unbiased choice in the sense that it has the
largest Shannon entropy among all possible copulas for a given random vector. Moreover,
the checkerboard copula can preserve the dependence information of the underlying random
vector. This preservation property is applied to identify suitable distributions in the context
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of diversification penalty studied by Chen, Embrechts, and Wang (2024a, 2024b) and to deter-
mine the ranks of the moments of induced order statistics in the context of impact portfolios
studied by Lo et al. (2024). Finally, our results indicate that the choice of copula significantly
affects the calculation of corisk measures when the marginal distributions are not continu-
ous. Through numerical experiments and empirical studies, we find that the checkerboard
copula can produce reliable results when computing marginal ES and demonstrate strong
performance when constructing minMES portfolios.
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