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We develop an evolutionary model for individual discriminatory behavior that emerges naturally in 
a mixed population as an adaptive strategy. Our findings show that, when individuals have finite 
memory and face uncertain environments, they may rely on prior biases and observable group traits 
to make decisions, changing their discriminatory practices. We also demonstrate that a finite memory 
is a consequence of natural selection because it leads to higher fitness in dynamic environments with 
mutations. This adaptability allows individuals with finite memory to better respond to environmental 
variability, offering a potential evolutionary advantage. Our study suggests that memory constraints 
and environmental changes are critical factors in sustaining biased behavior, suggesting insights into 
the persistence of discrimination in real-world settings and possible mitigation strategies across fields, 
including education, policymaking, and artificial intelligence.
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One of today’s most hotly debated issues is a failure of collective intelligence—discrimination. Discrimination 
manifests itself in many different forms, including but not limited to racial, gender, and ethnic biases. As such, 
discrimination has widespread social, economic, and psychological implications, and remains a significant 
problem in the world’s societies. The persistence of this form of collective ignorance across different cultures and 
environments highlights the profound impact that biased behavior can have on both individuals and groups, by 
shaping differential access to resources, opportunities, and social standing.

Discrimination has historically been examined through frameworks such as internal bias, prejudice, and 
ignorance1. Traditional economic theories often attribute discriminatory behavior to irrational beliefs2–4 or 
incomplete information5,6, where decision-makers rely on stereotypes or unfounded assumptions to guide their 
choices about individuals or groups. Other explanations in the economics-based literature include the emergence 
of biases and stereotyping via motivated reasoning7–9 and the strategic benefits of distorted beliefs10–15.

Discrimination, however, is not simply an individual act shaped by personal biases. It is also a collective 
phenomenon that emerges as a group-level strategy in response to environmental pressures. When the 
environment rewards non-discrimination, those who adapt to it will succeed. However, if the environment rewards 
discrimination, a portion of the population will continue to exhibit this behavior. In this context, discrimination 
is not merely a by-product of misinformed beliefs, but a practice that may evolve as an adaptive behavior that 
maximizes the survival and success of a group. For instance, when resources are limited and fitness—defined 
here as the capacity to survive and reproduce—relies on interactions with other groups, individuals may use 
observable traits such as race, gender, or ethnicity to optimize their decision-making process.

Both cognitive biases and evolutionary pressures may shape discriminatory behavior. On the one hand, 
stereotypes, which are shaped by prior beliefs and incomplete information, may guide decisions in uncertain 
environments. On the other hand, evolutionary pressures may encourage discrimination as a strategic behavior 
for long-term success by the discriminator, especially in resource-scarce conditions.

From a biological standpoint, one plausible hypothesis is that stereotypes may emerge as an unintended 
consequence of finite memory. When individuals cannot retain all relevant information about their interactions 
with others, they may resort to simplified cues, such as group traits, to make decisions under uncertainty. This 
reliance on incomplete information can foster the development of biases and stereotypes as imperfect but 
functional adaptations to cognitive constraints. Alternatively, such biases may arise not only from a lack of 
information, but also from the need to process overwhelming amounts of it—where heuristics serve to reduce 
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complexity rather than compensate for scarcity. In both cases, cognitive limitations—whether due to memory 
scarcity or informational overload—can play a central role in shaping discriminatory behavior over time.

This article models discrimination as a behavior influenced by evolutionary pressures in environments 
where individuals face uncertainty and possess finite memory. A finite memory limits the ability to recall past 
information, and in doing so, it shapes discriminatory behavior. Unlike scenarios where individuals possess an 
infinite memory, where biases might not persist over time, a finite memory leads individuals to overemphasize 
recent events, changing their discrimination behavior. This adaptation, while not always optimal, is still able to 
maximize long-term fitness in environments with uncertainty and variability.

To formalize this idea, we develop a mathematical framework built upon a binary choice model16–18, where 
individuals from two distinct groups—referred to here as “Andorians” and “Tellarians”—must decide whether 
to discriminate against members of the other group. The decisions of individuals in one group are shaped by 
histories of adverse events and prior beliefs about future risks in the other group. The fitness, or reproductive 
success, of an individual depends on these decisions. The Andorians, representing the majority group, must 
decide whether to engage with or avoid the Tellarians, whose probability of adverse events is initially unknown to 
the Andorians and must be inferred over time. Here, we follow the literature, deliberately using fictitious species 
borrowed from science fiction to reduce the tension that accompanies a discussion of these highly emotionally 
charged issues, and also to illustrate the generality of our analysis. In particular, our framework can be applied 
to any marginalized group[18,19].

In our model, we compare the outcomes of infinite and finite memory in shaping discriminatory behavior. 
With an infinite memory, individuals can retain a comprehensive record of past interactions, which implies a 
more informed decision-making process and less reliance on biased shortcuts. This infinite-memory case is 
regarded as a theoretical benchmark and is compared with the more realistic finite-memory case. We find that 
a finite memory may lead to different patterns of discrimination, as individuals tend to overemphasize recent 
experiences. Despite this difference in capacity, however, we prove that a finite memory can be the optimal 
strategy in dynamic environments where mutations can occur in individual behavior. This is because the 
flexibility provided by a finite memory allows individuals to adapt more rapidly, making it a more effective 
choice for long-term survival and fitness. In other words, a finite memory, while seemingly inefficient in stable 
environments, is crucial for adapting to the variability introduced by mutations.

These findings present a challenge for education and policymaking by highlighting the role of memory 
and environmental uncertainty in fostering bias and discrimination. The key issue is how to balance teaching 
about the dangers of discrimination, while acknowledging the natural cognitive processes that encourage it, and 
emphasizing the need for strategies that enhance adaptability and critical thinking rather than focusing solely on 
increasing information and exposure to diverse viewpoints.

The contributions of this article are threefold. First, we model the decision to discriminate as a function 
of both memory and prior beliefs, revealing patterns in the emergent discriminatory strategies. Second, we 
demonstrate how finite memory, in contrast to infinite memory, alters the characteristics of discrimination, 
potentially leading to different discriminatory behavior. Third, we show that in environments with mutations in 
individual behavior, finite memory can be more advantageous than infinite memory by enabling more flexible 
responses to changing conditions. We also discuss the real world implications of our theoretical findings in areas 
such as education, policymaking, and artificial intelligence. Proofs of all theoretical results are provided in the 
Supplementary Material.

The framework
As an illustration of the basic intuition behind our evolutionary framework, we first present a toy example of 
discrimination before introducing the formal model.

A toy example
Consider a population of individuals who must decide whether to discriminate or not when interacting with 
others16. The environment is stochastic. Seventy percent of the time, the environment favors non-discrimination, 
meaning that individuals who choose not to discriminate gain an advantage such as more resources or 
opportunities, which leads to reproductive success (say, producing 3 offspring). In contrast, discriminators will 
suffer a penalty, yielding 0 offspring. In the remaining 30% of the time, the environment favors discrimination, 
rewarding those who discriminate with reproductive success (3 offspring), while non-discriminators yield 0 
offspring.

At first glance, always choosing not to discriminate seems like the rational decision because it leads to success 
more frequently. However, if the entire population consistently refrains from discrimination, the 30% of the time 
when discrimination leads to success would result in the population having no offspring during those periods, as 
non-discriminators would not reproduce. Over time, this would lead to extinction, as the population would miss 
critical opportunities to reproduce and sustain itself. The reverse is true for always choosing to discriminate; 
this behavior would lead to failure in the 70% of cases where non-discrimination is rewarded. In such cases, 
discriminators would not reproduce, also leading to extinction. Thus, neither strategy—always discriminating 
or always not discriminating—is sustainable for the population in the long term.

The optimal behavior in this environment is for individuals to not discriminate 70% of the time and to 
discriminate 30% of the time, aligning their behavior with the environmental conditions. This is known as the 
probability matching strategy, and it leads to the highest reproductive success for the group as a whole, ensuring 
survival across different environmental contexts16,20. The mathematical intuition behind why probability 
matching is the growth-optimal behavior lies in the fact that the population growth rate, 3 × p70% × (1 − p)30%, 
is maximized when p = 70%. Over time, individuals who adopt this adaptive behavior dominate the population.
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This example illustrates how environmental conditions shape discriminatory behavior. When the environment 
rewards non-discrimination, those who adapt to it will succeed. However, if the environment still occasionally 
rewards discrimination, a portion of the population will continue to exhibit this behavior.

To fully appreciate how behavior can be shaped by other important factors in evolution—such as finite 
memory and mutation—we present the formal model in the next section, which generalizes the binary choice 
model in the literature16–18.

The formal model
Consider a hypothetical world with a population composed of two groups, as described in previous literature18: a 
majority group, which we refer to as the “Andorians,” and a minority group, which we refer to as the “Tellarians.” 
Group membership is unambiguous, mutually exclusive (each individual is a member of one and only one 
group), immutable, and observable by all. There are two factors that determine each individual’s fitness: λA and 
λT . They represent social interactions with Andorian and Tellarian individuals, respectively. An individual who 
interacts with Andorian individuals is subject to the Andorian factor, λA, whereas an individual who interacts 
with Tellarian individuals is subject to the Tellarian factor, λT . Both λA and λT  are independent binary random 
variables distributed as follows:

	
λA =

{
λlow

A , with probability q,
λhigh

A , with probability 1 − q,
λT =

{
λlow

T , with probability r,
λhigh

T , with probability 1 − r,

where λhigh
A > λlow

A > 0, λhigh
T > λlow

T > 0, and q, r ∈ (0, 1). Here, for expositional simplicity and without 
loss of generality, we consider a two-factor model. A more general model with multiple factors can also be found 
in the literature17.

Without loss of generality, we assume that each factor takes only one of two possible values: a low fitness of 
λlow

A  or λlow
T , which happens in the context of an adverse event related to that group, and a high fitness of λhigh

A  
or λhigh

T , which represents the normal case. Parameters q and r denote the probability of adverse events for the 
Andorian and the Tellarian groups, respectively, which we refer to as “adverse probabilities” for simplicity. For 
example, a Tellarian individual may experience an adverse event with a (small) probability r, in which case 
anyone interacting with that individual will experience low fitness in that period. Examples of adverse events 
could include crime, disease, or economic hardship, among others.

Analogous to human societies, we will assume that the Tellarian community has been politically 
underrepresented, with less access to education and economic opportunities18. As a result, this inequality has 
led to a higher adverse probability for the Tellarian community compared to the population average. Note that 
the higher adverse probability is not innate, but the result of a complicated set of determinants, including limited 
historical access to resources. However, in this model, individuals observe only each other’s group membership, 
which they use as a marker in the absence of any other information. The true underlying causes of the higher 
adverse probability, such as lack of educational opportunities, are assumed to be unobservable.

We now focus on the perspective of an Andorian, who faces a decision between one of two actions—whether 
or not to discriminate against a Tellarian—which determines their fitness18. We assume that an Andorian’s 
number of offspring is given by xdis if the individual chooses to discriminate, and xnodis if the individual 
chooses not to discriminate:

	 xdis = βdisλT + (1 − βdis)λA, xnodis = βnodisλT + (1 − βnodis)λA.

Here, 0 ≤ βdis < βnodis ≤ 1. The fitness of an Andorian depends on both λT  and λA, and βdis and βnodis 
represent its degrees of interaction with Tellarians under discrimination and non-discrimination, respectively. 
For example, βdis = 0.2 means that, when choosing to discriminate, an Andorian interacts with Tellarians 
only 20% of the time and with other Andorians 80% of the time. These parameters quantify the intensity of 
intergroup contact: the lower the value of βdis or βnodis, the stronger the avoidance behavior. In our framework, 
discrimination is modeled as a reduction in the degree of interaction with Tellarians, which is captured by the 
inequality βdis < βnodis.

Assume all Andorians choose to discriminate with probability p ∈ [0, 1] and to not discriminate with 
probability 1 − p, denoted by a Bernoulli random variable Ip. Hence, the number of offspring for an individual 
is given by the random variable:

	 xp = Ipxdis + (1 − Ip)xnodis,

where

	
Ip =

{ 1, with probability p,
0, with probability 1 − p.

We henceforth refer to p as the probability of discrimination by Andorians. Note that p can be 0 or 1, which 
corresponds to always discriminating or always not discriminating. Generally, p can also be between 0 and 1, 
which corresponds to randomized behavior.

We normalize the initial number of Andorians to 1 without loss of generality, and denote the number of 
Andorians in generation T as nT . Because nT  grows exponentially over time T, we consider the exponential 
growth rate of the population size, T −1 log nT . Assume that (λA, λT ) is independent and identically distributed 
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(IID) over time and identical for all individuals in a given generation. Then, as proved in the literature, T −1 log nT  
converges in probability to the log-geometric-average growth rate16–18,21:

	 µ(p) = E [log (pxdis + (1 − p)xnodis)] .� (1)

This result aligns with the well-known principle of geometric mean fitness in evolutionary biology22.
Equation (1) plays a central role in evolutionary dynamics, as it captures the long-run fitness of a strategy in 

fluctuating environments. As formally established in the literature16–18,21, maximizing Eq. (1) leads to a “winner-
take-all” outcome, as individuals who do not maximize Eq. (1) will be rapidly overrun by those who do. In other 
words, individuals who maximize Eq. (1) will, over time, dominate the population. For completeness and clarity, 
we include a formal statement and proof of this result in the Supplementary Material.

The evolutionary behavior of maximizing Eq. (1) could be driven by cultural transmission mechanisms. 
For example, vertical transmission allows individuals to adopt the strategies of their parents or other high-
performing role models who achieve superior long-term growth. Alternatively, under natural selection 
dynamics, individuals employing suboptimal strategies may be gradually eliminated, as they are systematically 
outperformed by those who maximize long-run population fitness.

In this framework, the behavior of Andorians is completely characterized by the probability of discrimination, 
p, and degrees of interaction with Tellarians, βdis and βnodis. Although not entirely realistic from a biological 
perspective, this simplification clarifies the impact of evolution on behavioral dynamics, allowing us to derive 
the growth-optimal behavior explicitly.

Discrimination with infinite memory
In this section, we study the case in which individuals have infinite memory. Although such a setting is not 
realistic in practice, it serves as a theoretical benchmark that allows us to characterize the optimal behavior 
under perfect information. By comparing it with the finite-memory case, we can evaluate the extent to which 
cognitive limitations distort decision-making and lead to discriminatory outcomes.

When individuals have infinite memory, their decision to discriminate or not is based on the entire history 
of observed outcomes. Therefore, in this case we assume that the Andorians have already learned the behavior 
patterns of the Tellarians over time, and in particular, the probability of Tellarian adverse events, r, is known 
to Andorians. In this section, we derive the probability of discrimination for Andorians that maximizes their 
growth rate and analyze the patterns of this optimal strategy.

Optimal probability of discrimination
The following proposition gives the optimal probability of discrimination that maximizes the growth rate of the 
Andorian group.

Proposition 1  The optimal probability of discrimination, p, that maximizes the log-geometric-average growth 
rate defined by Eq. (1) is given by

	
p∗(q, r) =

{
1, if E[xdis/xnodis] > 1 and E[xnodis/xdis] < 1,
solution to Eq. (3), if E[xdis/xnodis] ≥ 1 and E[xnodis/xdis] ≥ 1,
0, if E[xdis/xnodis] < 1 and E[xnodis/xdis] > 1,

� (2)

where p∗ is defined implicitly in the second case of Eq. (2) by

	
E

[
xdis

p∗xdis + (1 − p∗)xnodis

]
= E

[
xnodis

p∗xdis + (1 − p∗)xnodis

]
.� (3)

Proposition 1 demonstrates how the optimal probability of discrimination, p∗, is determined by the relationship 
between the number of offspring of an Andorian who chooses to discriminate (xdis) and the number of 
offspring of an Andorian who chooses not to discriminate (xnodis). The optimal probability, p∗, for choosing to 
discriminate is determined by the comparative fitness between these two strategies, as follows:

•	 p∗ = 1 (Always Discriminate): When E[xdis/xnodis] > 1 and E[xnodis/xdis] < 1, discrimination yields 
strictly better fitness outcomes than non-discrimination. In this case, the optimal strategy is to always dis-
criminate, as it maximizes the individual’s reproductive success.

•	 p∗ = 0 (Never Discriminate): When E[xdis/xnodis] < 1 and E[xnodis/xdis] > 1, the reverse is true—
non-discrimination yields superior fitness. Hence, the optimal strategy is to never discriminate.

•	 p∗ ∈ (0, 1) (Partial Discrimination): When E[xdis/xnodis] ≥ 1 and E[xnodis/xdis] ≥ 1, neither strategy 
strictly dominates. While this might appear contradictory, it reflects a situation where the relative advan-
tage of discrimination versus non-discrimination fluctuates across different environments. For example, 
if there is some probability that discrimination yields significantly higher fitness than non-discrimination 
(xdis ≫ xnodis), and also some probability that the opposite holds (xnodis ≫ xdis), then it is possible for 
both expectations to exceed 1. This implies that no single strategy is uniformly optimal, and the best response 
involves randomizing between them. In this case, p∗ lies strictly between 0 and 1 and is determined implicitly 
by Eq. (3), reflecting a balance between the two strategies.

Proposition 1 demonstrates that, from the perspective of the whole population, the optimal strategy that 
maximizes the growth rate of the population may not be full discrimination or no discrimination. Instead, if 
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E[xdis/xnodis] ≥ 1 and E[xnodis/xdis] ≥ 1, the optimal probability of discrimination lies between 0 and 1, 
implying a randomized discrimination strategy.

As illustrated in the toy example discussed previously, in fact, from an individual’s perspective, the survival-
maximizing behavior is to always choose the action with higher average fitness (p = 0 or 1). However, partial 
discrimination emerges because the group as a whole benefits from survival advantages beyond individual 
optimization. In our framework, these benefits arise purely from the stochastic nature of the environment16–18,23–25. 
This is also a generalization of the “adaptive coin-flipping” strategies26, which are interpreted as a form of 
altruism, because individuals who engage in this behavior seem to be acting in the interest of the population at 
the expense of their own individual fitness.

Patterns of discrimination
To further illustrate how the optimal probability of discrimination, p∗, changes with respect to the adverse 
probabilities of Andorians and Tellarians, q and r, let us consider the following assumption:

Assumption 1  The fitness outcomes of Andorians and Tellarians are identical in adverse situations: 
λlow := λlow

A = λlow
T , and in normal situations: λhigh := λhigh

A = λhigh
T .

Assumption 1 simplifies the model by removing any inherent differences in the potential benefits or costs 
associated with the two groups. As a result, our framework focuses on the probabilities of adverse events, q and 
r, rather than any intrinsic differences in group fitness.

Under Assumption 1, the optimal solution given by Proposition 1 can be characterized explicitly as follows.

Proposition 2  Under Assumption 1, the optimal probability of discrimination, p, that maximizes the log-ge-
ometric-average growth rate defined by Eq. (1) is given explicitly by

	
p∗(q, r) =

{
1, if r > rupper,
p∗partial(q, r), if rlower ≤ r ≤ rupper,
0, if r < rlower

� (4)

	 = Bound1
0

(
p∗partial(q, r)

)
, � (5)

where Bound1
0(x) = min{max{x, 0}, 1},

	

rupper = [(1 − βdis)λhigh + βdisλ
low]q

(1 − 2βdis)(λhigh − λlow)q + βdisλhigh + (1 − βdis)λlow ,

rlower = [(1 − βnodis)λhigh + βnodisλ
low]q

(1 − 2βnodis)(λhigh − λlow)q + βnodisλhigh + (1 − βnodis)λlow ,

and

	
p∗partial(q, r) = [βnodisλ

high + (1 − βnodis)λlow](1 − q)r − [βnodisλ
low + (1 − βnodis)λhigh]q(1 − r)

(βnodis − βdis)(λhigh − λlow)(q + r − 2qr) .

In addition, the optimal growth rate defined by Eq. (1) is given explicitly by

	

µ(p∗(q, r)) = qr log λlow + (1 − q)(1 − r) log λhigh

+ q(1 − r) log
[
(βdis − βnodis)(λhigh − λlow)p∗(q, r) + βnodisλ

high + (1 − βnodis)λlow]

+ (1 − q)r log
[
(βdis − βnodis)(λlow − λhigh)p∗(q, r) + βnodisλ

low + (1 − βnodis)λhigh]
.

This proposition provides an explicit solution for the optimal probability of discrimination given by Proposition 
1. When the adverse probability of the Tellarian group, r, exceeds a threshold rupper, the probability of adverse 
events is high enough that it becomes optimal to always discriminate, as avoiding interactions with Tellarians 
maximizes the fitness of Andorians. Conversely, when r is below a threshold rlower, adverse events are infrequent, 
making it optimal to never discriminate. For intermediate values of r, where rlower ≤ r ≤ rupper, the optimal 
strategy involves partial discrimination with probability p∗partial(q, r), reflecting a balance between risks and 
benefits. This corresponds to the case E[xdis/xnodis] ≥ 1 and E[xnodis/xdis] ≥ 1 in Eq. (2).

The following proposition shows how the optimal probability of discrimination changes with respect to the 
adverse probabilities for the two groups, q and r.

Proposition 3  The optimal probability of discrimination given by Eq. (4), p∗(q, r), decreases with respect to q 
and increases with respect to r.

Proposition 3 demonstrates that the optimal probability of discrimination increases as the adverse probability, r, 
increases, reflecting a greater incentive to discriminate when the risk of adverse events on the part of Tellarians 
is higher. In contrast, the probability of discrimination decreases as q, the probability of adverse events for 
Andorians themselves, increases. This indicates that, as Andorians themselves face a higher risk of adverse 
events, the relative benefit of discriminating against Tellarians diminishes.
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Figure 1 shows how the optimal probability of discrimination, p∗(q, r), given by Proposition 2 varies with 
different values of q and r. For illustrative purposes, we set λlow = 1 and λhigh = 2. In addition, we assume 
βdis = 0, meaning that when an individual chooses to discriminate, they completely avoid interacting with 
Tellarians. On the other hand, if an individual chooses not to discriminate, they interact equally with both 
groups, and we let βnodis represent the proportion of Tellarians in the population. Figure 1a,b show the optimal 
discrimination probabilities when βnodis = 0.5 and βnodis = 0.2, respectively.

From Fig. 1, we observe a strong polarization between non-discrimination and full discrimination. In the 
top-left corners (where q is large and r is small), Andorian individuals tend not to discriminate, as the risk to 
Andorians is higher and the risk from Tellarians is lower. Conversely, in the bottom-right corners (where q is 
small and r is large), Andorians fully discriminate, because the risk from Tellarians is higher and the risk to 
Andorians is smaller. The transitional region between these two extremes is relatively narrow, indicating that the 
shift between non-discrimination and full discrimination happens over a small range of q and r values. Figure 
1 also illustrates that the probability of discrimination increases with r and decreases with q. This verifies the 
theoretical results of Proposition 3.

Comparing Fig. 1a,b, we see that the transitional region in the middle is narrower when βnodis = 0.2 than 
when βnodis = 0.5, implying a quicker shift between non-discriminatory and discriminatory behaviors. This 
means that when the proportion of Tellarians in the population, βnodis, is smaller, Andorians are more likely 
to discriminate, as Andorian individuals see less benefit from interacting with the minority group of Tellarians. 
This also implies a stronger behavioral polarization—Andorians will either fully discriminate against Tellarians 
or will not discriminate at all, with little middle ground.

To summarize, we find that the discrimination strategy of Andorians changes with respect to the adverse 
probabilities of the two groups, and the polarization becomes stronger when the proportion of Tellarians in the 
population is smaller. These results are based on the assumption that the adverse probability of Tellarians, r, is 
known to Andorians. In the next section, we explore the discrimination patterns when individuals have finite 
memory, introducing new complexities to their decision-making.

Discrimination with finite memory
Unlike the case of infinite memory, individuals in practice have a finite memory due to natural cognitive 
constraints. Therefore, Andorians cannot perfectly estimate the true value of the probability of adverse events for 
Tellarians, r, based on the whole of their past history of interactions with Tellarians. In this section, we consider 
the scenario in which Andorians estimate the value of r based on their finite memory of Tellarians. This approach 
is inspired by the memory/prediction framework27, which argues that individuals store memory patterns and 
use them to predict what will happen in the future.

We assume that Andorians use a Bayesian decision analysis framework to incorporate prior judgments and 
potential updates of their estimate of r into this framework. The basic idea of a Bayesian framework is that 
Andorians believe in advance that r will take certain values at some prior probability. These prior probabilities 
may be biased initially, but as Andorians interact more often with Tellarians, they will gradually update these 
probabilities to yield better estimates.

This Bayesian framework, although seemingly abstract, in fact has a biological motivation. It has been shown 
that Bayesian decisions can emerge naturally from evolution and adaptation28. In addition, human subjects 
tend to follow Bayesian strategies on average but not individually29,30. Human subjects have also been shown 
to make decisions based on a small number of samples instead of computing the fully Bayesian solution31–33, 

Figure 1.  Optimal probability of discrimination given by Proposition 2. We set λlow = 1, λhigh = 2, and 
βdis = 0. (Hereinafter, we provide the detailed parameter setups of all figures in this article in the figure 
captions).
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which aligns with our assumption of finite memory. The Bayesian paradigm has been widely used in research 
on cognitive science34, such as animal learning35, visual scene perception and concepts36,37, motor control38, 
semantic memory39, symbolic reasoning40, social cognition41, and biological evolution42–47.

Hereafter, we denote the true adverse probability of Tellarians by a constant r∗. Andorians do not know r∗. 
They apply a Bayesian decision framework, model the adverse probability of Tellarians as a random variable, r, 
and believe that r is either r0 or r1 with prior probabilities π0 ∈ (0, 1) and π1 = 1 − π0, respectively:

	
r =

{
r0, with probability π0,
r1, with probability π1. � (6)

Without loss of generality, let us assume that 0 < r0 < r1 < 1.
The prior probabilities π0 and π1 represent Andorians’ prior judgment about Tellarians. As Andorians 

interact with Tellarians, they may update their judgment based on their observations of Tellarians during their 
interactions. Assume that Andorians have observed N Tellarians with fitnesses λ1

T , λ2
T , . . . , λN

T , respectively, 
where λ1

T , λ2
T , . . . , λN

T  are IID random variables following the same distribution as λT . The parameter N can 
be interpreted as a proxy for the amount of information retained in memory—larger N implies more extensive 
exposure to past experiences, while smaller N captures a more limited view. In this sense, our use of finite N 
serves as a stylized representation of finite memory, which inherently limits the amount of usable information. 
While this is a simplification of how real memory functions, it provides a tractable way to model information 
constraints in belief updating.

Under this framework, the Bayesian estimation of r∗ is explicitly given by the following proposition:

Proposition 4  The Bayesian estimation of r∗, r̂N (λ1
T , λ2

T , . . . , λN
T ), is given explicitly by:

	
r̂N (λ1

T , λ2
T , . . . , λN

T ) = E[r|λ1
T , λ2

T , . . . , λN
T ] = π0rm

0 (1 − r0)N−mr0 + π1rm
1 (1 − r1)N−mr1

π0rm
0 (1 − r0)N−m + π1rm

1 (1 − r1)N−m
,� (7)

where m = #{i : λi
T = λlow

T , 1 ≤ i ≤ N} is the number of Tellarians observed with adverse events.
Proposition 4 shows that the Bayesian estimation of r∗, r̂N , is a weighted average of r0 and r1, with weights 
depending on the prior probabilities, π0 and π1, as well as the observed outcomes of Tellarians. The estimated 
value, r̂N , falls between r0 and r1. In particular, in the extreme case where π0 = 1 and π1 = 0, Andorians 
are fully confident that r = r0, so r̂N = r0 regardless of the observations. Similarly, if π0 = 0 and π1 = 1, 
Andorians are certain that r = r1, and r̂N = r1.

If π1 lies within 0 and 1, r̂N  will depend on the number of Tellarians that Andorians have observed, N, and the 
number of those individuals who experienced adverse events, m. As m increases, the estimation shifts towards 
the higher probability r1, while a lower m makes r̂N  closer to r0. Therefore, the estimator, r̂N , incorporates both 
prior beliefs and actual observations of Tellarians.

Figure 2 illustrates how r̂N  changes with respect to the observed proportion of Tellarians who experience 
adverse events, m/N, for different values of the prior probability, π1. Figure 2a,b correspond to different total 
numbers of observations, N = 10 and N = 20, respectively.

Figure 2 shows that r̂N  increases as the proportion of Tellarians with adverse events (m/N) rises, reflecting 
the influence of observed outcomes on the estimation of r∗. When individuals experience more random adverse 
events from interactions with Tellarians, they tend to attribute it to the Tellarian species, because it is the most 
easily observable marker, leading to discrimination against Tellarians. This phenomenon is also referred to as 
statistical discrimination2,3—agents overweight the prevalence of a trait in a group when that trait appears to be 
highly representative of the group in question48,49.

The estimation also relies on the prior probability, π1. For a given observed proportion m/N, r̂N  increases 
as π1 increases. This reflects the outcome that, as the weight given to the belief of r = r1 grows, the estimate 

Figure 2.  The Bayesian estimation of r∗ given by Proposition 4. We set r0 = 0.1 and r1 = 0.5.
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of r∗ will be higher—in the case of humans, this is consistent with the findings in the literature that they tend 
to anchor towards their original beliefs50. When π1 = 0, meaning Andorians fully believe r = r0 initially, the 
estimation remains to be r0. Conversely, when π1 = 1, corresponding to the belief that r = r1, the estimation 
remains to be r1.

Comparing Fig. 2a,b, we observe that a larger N leads to a sharper transition in r̂N  as a function of m/N. With 
more observations, the estimation becomes more sensitive to the proportion of adverse events, resulting in a 
steeper curve. This shows the impact of larger sample sizes in refining the estimate of r∗, making the estimation 
process more decisive as N grows.

The following proposition further shows that the estimation of r∗ given by Proposition 4, r̂N , can be used to 
maximize the conditional expected growth rate of the population, given the observations of Tellarians.

Proposition 5  The optimal probability of discrimination, p, that maximizes the conditional expected growth 
rate,

	 µ(p|λ1
T , λ2

T , . . . , λN
T ) = E

[
log (pxdis + (1 − p)xnodis) |λ1

T , λ2
T , . . . , λN

T

]
,

is

	 p̂∗
N (λ1

T , λ2
T , . . . , λN

T ) := p∗ (
q, r̂N (λ1

T , λ2
T , . . . , λN

T )
)

,� (8)

where p∗(·, ·) is given by Eq. (2) and r̂N (λ1
T , λ2

T , . . . , λN
T ) is given by Eq. (7).

Proposition 5 demonstrates that the Bayesian decision is optimal when maximizing the conditional expected 
growth rate of the Andorian group if the true value of r∗ is unknown and the memory is finite. In addition, 
Proposition 5 also provides a practical approach for determining the optimal probability of discrimination. With 
this result, we can first estimate r∗ using the Bayesian estimation given by Proposition 4, r̂N (λ1

T , λ2
T , . . . , λN

T ). 
Then, we substitute r̂N  into the expression for the optimal probability of discrimination p∗(q, r̂N ), as defined 
in Eq. (2).

Patterns of discrimination
In this section, we study the patterns of discrimination when Andorians have finite memory. Figures 3, 4, and 5 
show how the optimal probability of discrimination, p̂∗

N , given by Proposition 5 varies with respect to different 
parameters. In particular, Fig. 3 focuses on the impact of prior probability, π1, and the prior belief of adverse 
probability of Tellarians, r1; Fig. 4 focuses on the observed number of adverse events of Tellarians, m; and Fig. 5 
further focuses on the number of observed Tellarians, N. As in Fig. 1, we observe that the optimal probability of 
discrimination increases as r∗ increases and as q decreases.

In Fig. 3a–d, we observe that when r1 increases from 0.3 to 0.5, the range where the discrimination 
probability equals 1 expands. This means that higher values of r1 make fully discriminatory behavior more likely. 
In addition, as π1 increases from 0.2 to 0.8, individuals are also more inclined to adopt full discrimination. Both 
indicate that prior beliefs play a crucial role in determining how easily discrimination is triggered.

Figure 4 further shows how the observed number of adverse events of Tellarians, m, influences the 
optimal probability of discrimination. As shown in Fig. 4a–d, the area with full discrimination expands from 
m = 0.8Nr∗ to m = 1.2Nr∗. This means that the more frequently adverse outcomes are observed among the 
Tellarians, the broader is the resulting range of discrimination. In other words, discrimination may also emerge 
due to biased observations.

Figure 5 illustrates how the optimal probability of discrimination responds to changes in the number of 
observed Tellarians, N, under the assumption that the observed number of adverse events is set to its expected 
value, m = Nr∗. In Fig. 5a,c, we fix N = 5, while in Fig. 5b,d, we increase the number of observed Tellarians 
to N = 10. We find that the difference between Fig. 5b,d—which is driven by variation in π1—is noticeably 
smaller than the corresponding difference between Fig. 5a,c. This suggests that, as more evidence accumulates 
through increased observations, the influence of prior beliefs on discriminatory behavior gradually diminishes.

Finally, by comparing Figs. 3–5 and Fig. 1, we find that the patterns of discrimination are different if 
Andorians have finite or infinite memory. For example, from the figures, when the true adverse probability of 
Tellarians, r∗, is smaller than the prior value, r0 = 0.1, discrimination tends to occur more frequently under 
finite memory. This is not simply due to the limited number of observations, but because the Bayesian estimate, 
r̂N , remains partially anchored to the prior belief, r0, leading to an overestimation of risk and, consequently, 
greater discriminatory behavior. In the real world, because all individuals have only finite memory, prior beliefs 
and biased observations play significant roles in these patterns.

Types of errors
As we have shown, prior beliefs and biases in observations can significantly influence discriminatory behavior. 
This influence can lead to situations where Andorians either discriminate against Tellarians who pose a lower 
risk, or fail to discriminate against those who pose a higher risk. These two types of errors reflect the potential 
consequences of “incorrect” decisions based on imperfect information.

We formally define the two types of errors as follows. A Type I error occurs when Andorians discriminate 
against Tellarians who have a lower adverse probability (r0), while a Type II error occurs when Andorians do 
not discriminate against Tellarians who have a higher adverse probability (r1). In our context, we define the two 
types of errors as follows:
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	 Type I error = E
[
p̂∗

N (λ1
T , λ2

T , . . . , λN
T )|r∗ = r0

]
, � (9)

	 Type II error = E
[
1 − p̂∗

N (λ1
T , λ2

T , . . . , λN
T )|r∗ = r1

]
, � (10)

where p̂∗
N (λ1

T , λ2
T , . . . , λN

T ) is given by Eq. (8).
By definition, if Andorians always choose to discriminate, the Type I error = 1 and the Type II error = 0; 

conversely, if they never discriminate, the Type II error = 1 and the Type I error = 0. In practice, Andorians may 
choose to discriminate with a certain probability, leading to a trade-off between the two types of errors.

The following proposition provides explicit formulas to compute the two types of errors.

Proposition 6  The two types of errors defined by Eqs. (9) and (10) can be computed by

	

Type I error =
N∑

m=0

N !
m!(N − m)!r

m
0 (1 − r0)N−mp∗(q, r̂N (m)),

Type II error = 1 −
N∑

m=0

N !
m!(N − m)!r

m
1 (1 − r1)N−mp∗(q, r̂N (m)),

where p∗(·, ·) is given by Eq. (2) and

Figure 3.  The optimal probability of discrimination under finite memory given by Proposition 5 with different 
prior probability, π1, and prior belief of adverse probability of Tellarians, r1. We set N = 10, m = Nr∗, 
r0 = 0.1, λhigh = 2, λlow = 1, βdis = 0, and βnodis = 0.5.
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r̂N (m) = π0rm

0 (1 − r0)N−mr0 + π1rm
1 (1 − r1)N−mr1

π0rm
0 (1 − r0)N−m + π1rm

1 (1 − r1)N−m
.� (11)

Figure 6 shows how the Type I and Type II errors given by Proposition 6 change with respect to the prior 
probability, π1, and the adverse probability for Andorians, q. Figure 6a illustrates the Type I error, which increases 
as π1 increases. This indicates that as the prior belief in a higher adverse probability r1 becomes stronger, the 
probability of incorrectly choosing to discriminate when r∗ = r0 increases. Similarly, the Type I error also 
increases as the adverse probability of Andorians, q, decreases.

In contrast, Fig. 6b shows the Type II error, which decreases with π1. This means that as the prior belief in 
r1 strengthens, the probability of wrongly not discriminating when the true adverse probability is r1 becomes 
lower. The Type II error also decreases as q decreases due to a higher probability of discrimination.

Overall, the figure demonstrates a classic trade-off between Type I and Type II errors. Increasing π1 raises the 
chance of a Type I error while reducing the Type II error. This highlights the role of prior beliefs in shaping the 
balance between greater discrimination (a Type I error) and missing avoidable risks (a Type II error).

Asymptotic behavior
Our previous analysis shows that finite memory can significantly influence discriminatory behavior, as 
Andorians must rely on limited observations to make their discriminatory decisions. In this section, we examine 
the asymptotic behavior of discrimination as the number of observations increases without bound. This analysis 
allows us to explore the relationship between finite memory and infinite memory.

The following proposition shows the asymptotic behavior of r̂N (λ1
T , λ2

T , . . . , λN
T ) given by Eq. (7) as the 

number of observations of Tellarians, N, increases without bound.

Figure 4.  The optimal probability of discrimination under finite memory given by Proposition 5 with different 
prior probability, π1, and number of observed adverse events of Tellarians, m. We set N = 10, r0 = 0.1, 
r1 = 0.3, λhigh = 2, λlow = 1, βdis = 0, and βnodis = 0.5.
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Proposition 7  Denote r̂N = r̂N (λ1
T , λ2

T , . . . , λN
T ) given by Eq. (7). As N increases without bound, we have

	
r̂N

a.s.→
{

r0, r∗ < r̃,
r1, r∗ > r̃, � (12)

where

	
r̃ = log[(1 − r0)/(1 − r1)]

log[(1 − r0)/(1 − r1)] + log(r1/r0) .

In addition, we have

	

log r̂N −r0
r1−r̂N

+ log π0
π1

− N
[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(
log r1

r0
+ log 1−r0

1−r1

)2

d→N (0, 1),� (13)

which implies that for sufficiently large N, r̂N  has the following asymptotic density for x ∈ (r0, r1):

	

fr̂N (x) ≈ φ


 log x−r0

r1−x
+ log π0

π1
− N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(
log r1

r0
+ log 1−r0

1−r1

)2


 · r1 − r0

(x − r0)(r1 − x) ,� (14)

Figure 5.  The optimal probability of discrimination under finite memory given by Proposition 5 with different 
prior probability, π1, and number of observed Tellarians, N. We set r0 = 0.1, r1 = 0.3, m = 1.0Nr∗, 
λhigh = 2, λlow = 1, βdis = 0, and βnodis = 0.5.
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where φ(·) is the density of the standard normal distribution. Here, “a.s.→ ” and “ d→” stand for almost surely 
convergence and convergence in distribution, respectively.
Equation (12) implies that r̂N  converges to r0 almost surely if r∗ = r0, and converges to r1 almost surely if 
r∗ = r1. This implies that the Bayesian estimator, r̂N , is a consistent estimator of r∗. In other words, as the 
number of observations of Tellarians, N, increases without bound, the estimation of r∗ under finite memory will 
eventually converge to the case of infinite memory.

Equation (14) further gives the asymptotic density of r̂N  as N increases without bound. Figure 7 shows this 
asymptotic density under different values of π1 and r∗. Figure 7a illustrates that, when π1 is low, the density 
is concentrated around r0 = 0.1, indicating a stronger belief that r∗ is near r0. As π1 grows, the density 
shifts toward r1 = 0.3, showing that the estimation increasingly aligns with the higher value of prior belief in 
Tellarians’ adverse probability.

Figure 7b shows the asymptotic density for different values of the true adverse probability of Tellarians, r∗. 
As r∗ increases from 0.1 to 0.3, the density shifts from being concentrated around r0 = 0.1 to being closer to 
r1 = 0.3. This illustrates that the Bayesian estimation, r̂N , gives a consistent estimation of the true adverse 
probability, r∗.

The following proposition gives the asymptotic behavior of the optimal probability of discrimination, 
p̂∗

N (λ1
T , λ2

T , . . . , λN
T ), given by Eq. (8).

Proposition 8  Under Assumption 1, denote p̂∗
N = p̂∗

N (λ1
T , λ2

T , . . . , λN
T ) given by Eq. (8). As N increases with-

out bound, if r̂N
a.s.→ r̂∞, we have

Figure 7.  Asymptotic density of r̂N  given by Proposition 7. We set r0 = 0.1, r1 = 0.3, and N = 10.

 

Figure 6.  Type I and Type II errors given by Proposition 6. We set N = 10, r0 = 0.1, r1 = 0.3, λhigh = 2, 
λlow = 1, βdis = 0, and βnodis = 0.5.

 

Scientific Reports |        (2025) 15:31774 12| https://doi.org/10.1038/s41598-025-17089-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 p̂∗
N

a.s.→ p∗(q, r̂∞).� (15)

In addition, if rlower < r̂∞ < rupper, we have

	

log (B−r0C)p̂∗
N +A−r0D

(r1C−B)p̂∗
N

+r1D−A
+ log π0

π1
− N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(
log r1

r0
+ log 1−r0

1−r1

)2

d→N (0, 1),� (16)

which implies that for sufficiently large N, p̂∗
N  has the following asymptotic density for y ∈ (0, 1):

	

fp̂∗
N

(y) ≈ φ


 log (B−r0C)y+A−r0D

(r1C−B)y+r1D−A
+ log π0

π1
− N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(
log r1

r0
+ log 1−r0

1−r1

)2




· (r1 − r0)(BD − AC)
[(B − r0C)y + A − r0D][(r1C − B)y + r1D − A] ,

� (17)

where

	

A =
[
βnodisλ

low + (1 − βnodis)λhigh]
q,

B = (βnodis − βdis)(λhigh − λlow)q,

C = −(βnodis − βdis)(λhigh − λlow)(1 − 2q),
D = (λhigh − λlow)(1 − 2βnodis)q + βnodisλ

high + (1 − βnodis)λlow,

and φ(·) is the density of the standard normal distribution. Here, “a.s.→ ” and “ d→” stand for almost surely 
convergence and convergence in distribution, respectively.
Equation (15) demonstrates that, as the number of observations of Tellarians, N, increases without bound, 
the optimal probability of discrimination under finite memory, p̂∗

N , will converge to the result under the case 
of infinite memory. Equation (17) further gives the asymptotic density of p̂∗

N  when the optimal strategy with 
infinite memory is partial discrimination (rlower < r̂∞ < rupper). Figure 8 shows this asymptotic density of p̂∗

N  
under different values of π1 and r∗.

Figure 8a shows how the asymptotic density of p̂∗
N  changes with varying prior probabilities π1. As π1 

increases, the density of p̂∗
N  concentrates more towards large values. This indicates that, with a higher prior belief 

in the higher adverse probability r1, the optimal probability of discrimination tends to be higher.
Figure 8b shows how the asymptotic density changes with different true values of r∗. As r∗ increases, the 

density of p̂∗
N  shifts towards larger values, indicating a stronger tendency toward discrimination, while when r∗ 

is closer to r0, the density of p̂∗
N  is more concentrated near lower values. This implies that the optimal probability 

of discrimination depends on the true adverse probability of Tellarians, r∗. These observations meet our intuition 
and previous findings—finite memory will lead to Andorians making decisions based on their prior judgment 
and their finite observations of Tellarians, and if the prior information and observations are biased, unnecessary 
discrimination may emerge.

Figure 9 further illustrates the asymptotic behavior of the optimal probability of discrimination, p̂∗
N , by 

showing how it evolves with the number of observed Tellarians, N, under finite memory. In Fig. 9a, we fix 
m = Nr∗ and vary the prior belief π1, while in Fig. 9b, we fix π1 = 0.5 and vary the number of observed adverse 

Figure 8.  Asymptotic density of p̂∗
N  given by Proposition 8. We set r0 = 0.1, r1 = 0.3, N = 10, λhigh = 2, 

λlow = 1, βdis = 0, and βnodis = 0.5.
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events of Tellarians, m. The red dashed lines represent the benchmark optimal discrimination probability under 
infinite memory, as given by Eq. (4). From Fig. 9a,b, we observe that, as N increases, the finite-memory solution, 
p̂∗

N , gradually converges to the infinite-memory benchmark.
In addition, we observe that the speed of convergence depends crucially on both the prior belief and the 

observed outcomes. Specifically, in these simulations, we fix r0 = 0.1, r1 = 0.3, and set the true value of r∗ to 
r1 = 0.3. As shown in Fig. 9a, a higher prior weight on r1 (i.e., larger π1) leads to faster convergence, as the 
Andorians are already predisposed to believe in the true value of r∗. Figure 9b shows that, when more adverse 
outcomes are observed (i.e., higher m), the influence of the incorrect hypothesis, r0, diminishes more rapidly, 
further facilitating convergence to the infinite-memory optimal discrimination probability. These findings 
highlight how both prior beliefs and observation quality jointly shape discrimination behavior.

One can also observe an interesting wave-like fluctuation in Fig. 9 as N increases. This arises because the 
estimate r̂N  is based on N binary outcomes, and the number of observed adverse events, m, can only take integer 
values. As a result, small changes in N can cause r̂N  to shift across different regions of the piecewise-defined 
strategy function in Eq. (4), resulting in discontinuous adjustments in the optimal discrimination probability. 
Similar patterns often appear in models involving binomial inputs, such as Edgeworth expansions for sums of 
Bernoulli random variables51 and binomial tree models in option pricing52.

Mutation and finite memory
We have thoroughly examined the optimal discrimination strategies under both infinite and finite memory 
scenarios. In particular, we observed how memory limitations affect decision-making and how the optimal 
probability of discrimination evolves as the number of observations grows. Theoretically, the case of infinite 
memory seems to provide a more comprehensive understanding of the environment, as it incorporates all 
available information to maximize population growth. This leads to a natural question: from the perspective of 
maximizing the long-term growth of a population, is infinite memory truly superior to finite memory?

Interestingly, we know that evolution has favored finite memory systems in practice. Populations do not rely 
on infinite historical data, but instead make decisions based on limited observations and experiences. Why has 
evolution favored finite memory? What advantages does it offer over infinite memory?

In this section, we demonstrate that, in the absence of mutations, infinite memory is indeed optimal for 
maximizing population growth. However, when mutations are introduced into the population—creating 
variability in behavior and outcomes—finite memory systems can outperform infinite memory systems in terms 
of maximizing population growth. We explore how finite memory allows populations to adapt more efficiently 
to changing environments, while infinite memory may lead to rigidity and suboptimal decisions in the presence 
of such mutations. By incorporating the effects of mutations into our analysis, we show that finite memory is not 
a limitation, but an evolutionary advantage in maximizing the adaptability and growth potential of populations.

The optimality of infinite memory without mutation
The following proposition establishes that, under our previous framework without mutation, the population 
growth rate achieved under infinite memory is always superior to that of finite memory.

Proposition 9  Assume r∗ ∈ {r0, r1}. For the expected growth rate given by Eq. (1), µ(p), we have

	 E
[
µ

(
p̂∗

N (λ1
T , λ2

T , . . . , λN
T )

)]
≤ µ

(
p̂∗

∞(λ1
T , λ2

T , . . . )
)

= µ (p∗(q, r∗)) ,

Figure 9.  The optimal probability of discrimination given by Eq. (8), p̂∗
N , versus the number of observed 

Tellarians, N. We set r0 = 0.1, r1 = 0.3, r∗ = 0.3, q = 0.25, λhigh = 2, λlow = 1, βdis = 0, and 
βnodis = 0.5.
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where p̂∗
N (λ1

T , λ2
T , . . . , λN

T ) is given by Eq. (8), p̂∗
∞(λ1

T , λ2
T , . . . ) = limN→∞ p̂∗

N (λ1
T , λ2

T , . . . , λN
T ), and 

p∗(q, r) is given by Eq. (2).
The intuition behind Proposition 9 is that populations with infinite memory have access to all historical 
information, allowing them to make optimal decisions based on a complete understanding of the environment. 
Consequently, the expected growth rate under infinite memory will always be better than the growth rate under 
finite memory.

Figure 10 illustrates how the expected growth rate of the Andorian population changes as the number of 
observed Tellarians, N, increases. The red dashed line represents the growth rate achieved under infinite memory 
(N = ∞), and the blue curves correspond to varying prior probabilities π1 for the higher adverse probability, 
r1.

Figure 10 demonstrates that, the expected growth rate of Andorians under finite memory, 
E

[
µ

(
p̂∗

N (λ1
T , λ2

T , . . . , λN
T )

)]
, is always lower than the value achieved under infinite memory. In addition, 

the expected growth rate improves with more observations, as Andorians gain more information about the true 
value of r∗, allowing them to make more informed discrimination decisions.

Figure 10 also shows that, for higher values of π1, the growth rate converges more slowly to the infinite 
memory result as the number of observations, N, increases. This is because a higher π1 means that Andorians 
initially expect a higher risk from Tellarians, which leads to more discrimination even when r∗ is low. Therefore, 
more observations are needed to correct this prior belief, resulting in a slower convergence. Conversely, for lower 
values of π1, where the prior belief favors r0, the expected growth rate converges faster to the infinite memory 
case, as fewer observations are required to adjust the discrimination strategy.

The optimality of finite memory with mutation
Up to now, we always assume that Tellarians have a fixed true probability of adverse events, r∗. However, 
in reality, mutations can occur. In this section, we incorporate the possibility that Tellarians can mutate53. 
Specifically, we assume that for each Tellarian, with a small probability pm, its probability of adverse events 
mutates to rm ̸= r∗, and with a probability 1 − pm, its adverse event probability remains at r∗. Mutations occur 
independently across Tellarians. Andorians are unaware of the possibility of mutations and base their decisions 
on the assumption that r∗ is constant.

The following proposition demonstrates that, when mutations are introduced, finite memory can outperform 
infinite memory in terms of maximizing the population growth rate.

Proposition 10  Assume that the probability of mutation satisfies pm ∈ (0, 1) and the adverse probability after 
mutation rm ∈ (0, 1) satisfies rm ̸= r∗. Further assume that r∗ ∈ {r0, r1}, and Assumption 1 holds. Then, 
given pm, rm, and r∗, we can always find a set of parameters, π0, π1, r0, r1, q, βnodis, βdis, λlow, and λhigh, such 
that there exists N < ∞ satisfying

	 E
[
µ

(
p̂∗

N (λ1
T , λ2

T , . . . , λN
T )

)]
> µ

(
p̂∗

∞(λ1
T , λ2

T , . . . )
)

,

where p̂∗
N (λ1

T , λ2
T , . . . , λN

T ) is given by Eq. (8) and p̂∗
∞(λ1

T , λ2
T , . . . ) = limN→∞ p̂∗

N (λ1
T , λ2

T , . . . , λN
T ).

The intuition behind Proposition 10 lies in the adaptive flexibility that finite memory provides in dynamic 
environments. While infinite memory may appear advantageous in stable environments, it can hinder adaptation 
when the environment changes unexpectedly—for instance, due to mutations that alter the true adverse event 
probability. In such cases, individuals with infinite memory may become overly anchored to outdated prior 
beliefs, making their behavior less responsive to environmental changes.

In contrast, finite memory allows individuals to update their beliefs based on a limited set of observations 
under the Bayesian framework, making a compromise between prior beliefs and observations. This constraint—
rather than being a liability—can serve as a strength in dynamic settings. By avoiding overcommitment to prior 

Figure 10.  The expected growth rate of the Andorian population versus the number of observed Tellarians, N. 
We set q = 0.1, r∗ = 0.1, r0 = 0.1, r1 = 0.3, βdis = 0.0, βnodis = 0.5, λhigh = 2, and λlow = 1.
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beliefs, finite memory enables behavior to better reflect newly emerging patterns. This flexibility is what allows 
populations with finite memory to outperform those with infinite memory in environments with mutation.

Figure 11 illustrates how the expected growth rate of the Andorian population changes with the number of 
observed Tellarians, N, under different mutation probabilities, pm. Figure 11a,b show the results for two different 
prior probabilities, π1 = 0.5 and π1 = 0.8, respectively. Different curves represent different values of mutation 
probability, pm, with pm = 0 corresponding to the no-mutation case.

From the figures, we observe that as the mutation probability, pm, increases, the expected growth rate tends 
to decrease. This is because as pm grows, the probability of adverse events changes more frequently due to 
mutation, making it harder for Andorians to accurately estimate r∗ and adjust their discrimination strategy 
effectively. At higher mutation rates, the population becomes more prone to errors in estimating the true adverse 
probability, resulting in fewer optimal decisions and lower growth rates.

When comparing Fig. 11 with Fig. 10 (that is, without mutation), a key difference emerges: in the infinite 
memory scenario, the growth rate converges to the optimal value as N increases. In contrast, when mutations are 
introduced, finite memory populations experience a trade-off between the benefits of observing more Tellarians 
(increased N) and the challenge of adapting to an environment where Tellarians can mutate. As seen in Fig. 11, 
at higher mutation rates (pm > 0), as N increases, the growth rate may first increase then decrease, indicating 
that finite memory may be better than infinite memory.

Finite memory can outperform infinite memory in the presence of mutations. However, what is the 
optimal number of observations, or the optimal “memory size,” that will maximize population growth in such 
environments? Figure 12 numerically illustrates the optimal number of observations, N, that maximizes the 

Figure 12.  The optimal number of observations, N, that maximizes the expected growth rate of the Andorian 
population. We set q = 0.1, r∗ = 0.1, r0 = 0.1, r1 = 0.3, π0 = π1 = 0.5, βdis = 0, βnodis = 0.5, λhigh = 2, 
and λlow = 1.

 

Figure 11.  The expected growth rate of the Andorian population versus the number of observed Tellarians, 
N, under different mutation probabilities, pm. We set r∗ = 0.1, r0 = 0.1, r1 = 0.3, λhigh = 2, λlow = 1, 
βdis = 0.0, βnodis = 0.5, and rm = 0.5.
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expected growth rate of Andorians. We compare the optimal growth rate with N at ranges from 1 to 100. The 
color indicates the optimal value of N, where darker colors represent higher optimal values of N, and lighter 
colors represent smaller optimal values of N.

The figure shows that, when pm and rm are small, the optimal N is closer to 100, indicating that Andorians 
benefit from gathering a large number of observations to make more informed decisions. However, as pm and 
rm increase, the optimal number of observations decreases, suggesting that a finite memory is more effective 
in environments with higher mutation probabilities or more drastic changes in the adverse probability. Fewer 
observations are needed to optimize growth, as relying on too many observations may result in outdated or 
misleading information. In such cases, a finite memory becomes advantageous, allowing Andorians to quickly 
adapt to the changing environment.

Overall, our theoretical and numerical results emphasize that, in environments with frequent or substantial 
mutations, a finite memory (i.e., a smaller N) is preferable, as it allows populations to adapt more quickly, 
maximizing their growth potential.

Discussion
This article presents a comprehensive model that explores the evolution of discrimination in populations under 
both finite and infinite memory constraints, highlighting how rational maximizing decision-making processes 
may lead to discriminatory behavior. Our results demonstrate that discrimination is not merely a byproduct 
of bias or prejudice, but can arise as a response to environmental uncertainty and limited information. The 
core contribution of our work shows how finite memory introduces complexities into decision-making that 
sustain discriminatory practices over time, even when infinite memory might theoretically eliminate the need 
for reliance on prior biases.

We model discrimination as a strategy where individuals must decide whether to engage with others based 
on their group membership and observable traits. When individuals have infinite memory, they accumulate 
extensive knowledge over time, reducing their reliance on potentially biased observable characteristics. However, 
under finite memory constraints, the limited ability to recall past experiences leads individuals to depend on 
fewer past observations. This induces a tendency toward discriminatory behavior, especially when group traits 
serve as imperfect signals of risk.

An important extension of our model incorporates mutations, where the probability of adverse events among 
Tellarians may change. We find that while infinite memory theoretically provides individuals with the capacity to 
make fully informed decisions, it becomes a liability in environments where mutations occur. In such dynamic 
settings, finite memory allows for greater adaptability and flexibility, enabling populations to adjust more quickly 
to environmental changes. This result challenges the traditional assumption that more information is always 
better for decision-making. Instead, we show that limited memory might be an evolutionary advantage in 
maximizing long-term fitness, especially in environments where the probability of adverse events is variable.

While our model emphasizes finite memory as a cognitive constraint, the resulting behavior can also be 
interpreted more broadly as a response to limited information. We represent memory limitations by assuming 
that individuals base their judgments on a fixed number N of past observations—capturing the idea that decisions 
are made based on a restricted information set. While our analysis focuses on memory, similar behavioral 
patterns could arise from other informational bottlenecks, such as perceptual noise or attentional filtering. These 
alternative interpretations do not conflict with our core results, but rather suggest broader implications for how 
various forms of cognitive constraints may shape discriminatory behavior.

The results of this study have important implications for education, especially in terms of understanding 
how biases and discrimination develop. Our findings suggest that bias is not only a product of ignorance or 
prejudice, but can also be an adaptive response to environmental uncertainty and limitations in memory. This 
idea challenges traditional educational approaches that focus solely on sharing information or encouraging 
exposure to diverse viewpoints54. It suggests that more focus should be placed on teaching individuals how to 
navigate changing environments and improve their critical and flexible thinking skills, which can reduce reliance 
on biased decision-making strategies.

However, this presents a significant challenge in educational settings: how do we effectively teach the 
dangers of discrimination while also acknowledging the natural cognitive processes that may encourage it? Our 
comparison between infinite and finite memory highlights that such biases are not necessarily rooted in malice 
or ignorance, but may arise as adaptive responses to cognitive constraints. Memory limitations can make it 
difficult for individuals to fully process complex or fluctuating information, leading them to adopt shortcuts in 
decision-making. Therefore, it becomes crucial to foster not only awareness of bias but also the ability to adapt 
to uncertainty without relying on stereotypes or simplified judgments.

This introduces a nuanced perspective on education’s role in combating bias. It is not enough to simply 
provide more information or advocate for diversity. Instead, educational strategies should focus on enhancing 
cognitive flexibility, helping people recognize when they are relying on biased heuristics, and offering tools to 
better adapt to dynamic, unpredictable environments. This more balanced approach may lead to better outcomes 
in reducing discriminatory behavior in the long run.

For policymakers, understanding the role of finite memory in shaping bias offers new insights into why 
social biases persist despite efforts to promote equality. Policy efforts often assume that increasing knowledge or 
awareness will reduce bias, but our model suggests that even with more information, finite memory can lead to 
continued reliance on group-based traits when making decisions under uncertainty. This indicates that policies 
need to go beyond awareness campaigns, focusing instead on fostering adaptability and reducing the cognitive 
strain on decision-makers. Structural changes in institutions that guide behavior away from biased shortcuts 
may be needed to make lasting progress.
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Our findings also have significant implications for the development of artificial intelligence (AI) systems, 
particularly in how they handle memory and adapt to uncertainty. AI systems, like human decision-makers, are 
limited by their ability to process and store information. Mechanisms such as Long Short-Term Memory (LSTM) 
networks55 and attention mechanisms56 have been introduced to help AI models retain and prioritize relevant 
information over time. These mechanisms are crucial in adapting to dynamic environments and minimizing 
biased decisions. Instead of merely increasing the volume of data, our results suggest the need for AI systems 
to balance memory constraints with adaptability, ensuring they can respond to changing conditions without 
reinforcing harmful biases. Designing algorithms that leverage memory mechanisms while prioritizing fairness 
will be essential for reducing discriminatory outcomes in AI decision-making.

While our model provides a tractable framework for analyzing the emergence of discrimination under 
cognitive constraints, it also has several limitations. First, our results rely on the log-geometric-average growth 
rate of the population, Eq. (1), as the evolutionary objective. Although this has been shown to produce long-
run dominant strategies16–18,21, it is not the only plausible evolutionary criterion. Alternative fitness concepts—
such as maximizing the expected number of offspring, focusing on relative success, or including kin-selected 
strategies23,57–59—may lead to different behavioral dynamics.

Second, we represent finite memory as a fixed number N of IID observations. Although analytically 
convenient, this abstraction does not capture the full richness of real-world memory processes, such as the decay 
of older memories, the asymmetrical recall of negative versus positive events, or individual-level variation in the 
retention and weighting of past experiences.

Third, we assume that prior beliefs (π0, π1) are fixed and exogenously given. In practice, however, such priors 
may be shaped and reshaped by dynamic social influences—such as media exposure, education, or cultural 
narratives—which are not captured in our static Bayesian formulation.

Fourth, while we adopt a Bayesian framework, actual decision-making in animal and human minds may be 
a mix of different cognitive strategies. Alternatives include value-based heuristics such as prospect theory60, cue-
based decision rules61, and reinforcement learning through trial and error62.

Future work could extend the model along several directions. These include exploring alternative evolutionary 
objectives, incorporating more sophisticated memory dynamics, endogenizing belief formation, and comparing 
the fitness of Bayesian and non-Bayesian strategies under different conditions. Empirical validation—through 
behavioral experiments or observational data—would also help assess the extent to which our theoretical 
predictions align with real-world discrimination and belief formation.

This work contributes to the growing literature on evolutionary dynamics and decision-making under 
uncertainty. By demonstrating how memory constraints shape discriminatory behavior, we offer a new 
perspective on how discrimination can be a rational, albeit suboptimal, strategy in certain contexts. Overall, 
our study highlights the importance of considering both memory constraints and environmental variability 
when analyzing discrimination. These factors are critical in understanding the persistence of bias, inequality, and 
discrimination, and they provide a framework for developing more effective strategies to mitigate the harmful 
effects of discrimination in society.

Data availability
No datasets were generated or analyzed during the current study.

Received: 12 February 2025; Accepted: 21 August 2025

References
	 1.	 Becker, G. S. The Economics of Discrimination (University of Chicago Press, 1957).
	 2.	 Phelps, E. S. The statistical theory of racism and sexism. Am. Econ. Rev. 62, 659–661 (1972).
	 3.	 Arrow, K. J. The theory of discrimination. In Ashenfelter, O. & Rees, A. (eds.) Discrimination in Labor Markets, 3–33 (Princeton 

University Press, Princeton, NJ, 1973).
	 4.	 Coate, S. & Loury, G. C. Will affirmative-action policies eliminate negative stereotypes? Am. Econ. Rev. 1220–1240 (1993).
	 5.	 Schneider, D. J. The Psychology of Stereotyping (Guilford Press, 2005).
	 6.	 Bordalo, P., Coffman, K., Gennaioli, N. & Shleifer, A. Stereotypes. Q. J. Econ. 131, 1753–1794 (2016).
	 7.	 Fuligni, A.  J. Contesting Stereotypes and Creating Identities: Social Categories, Social Identities, and Educational Participation 

(Russell Sage Foundation, 2007).
	 8.	 Gorski, P. The myth of the “culture of poverty’’. Educ. Leadersh. 65, 32 (2008).
	 9.	 Bohren, J. A., Haggag, K., Imas, A. & Pope, D. G. Inaccurate statistical discrimination: An identification problem. Rev. Econ. Stat. 

1–45 (2023).
	10.	 Brocas, I. & Carrillo, J. D. The value of information when preferences are dynamically inconsistent. Eur. Econ. Rev. 44, 1104–1115 

(2000).
	11.	 Carrillo, J. D. & Mariotti, T. Strategic ignorance as a self-disciplining device. Rev. Econ. Stud. 67, 529–544 (2000).
	12.	 Bénabou, R. & Tirole, J. Self-confidence and personal motivation. Q. J. Econ. 117, 871–915 (2002).
	13.	 Compte, O. & Postlewaite, A. Confidence-enhanced performance. Am. Econ. Rev. 94, 1536–1557 (2004).
	14.	 Charness, G., Rustichini, A. & Van de Ven, J. Self-confidence and strategic behavior. Exp. Econ. 21, 72–98 (2018).
	15.	 Heller, Y. & Winter, E. Biased-belief equilibrium. Am. Econ. J. Microecon. 12, 1–40 (2020).
	16.	 Brennan, T. J. & Lo, A. W. The origin of behavior. Q. J. Finan. 1, 55–108 (2011).
	17.	 Zhang, R., Brennan, T. J. & Lo, A. W. Group selection as behavioral adaptation to systematic risk. PLoS ONE 9, e110848 (2014).
	18.	 Lo, A. W. & Zhang, R. The wisdom of crowds versus the madness of mobs: An evolutionary model of bias, polarization, and other 

challenges to collective intelligence. Collect. Intell. 1, 26339137221104784 (2022).
	19.	 Lo, A. W. & Zhang, R. The Adaptive Markets Hypothesis: An Evolutionary Approach to Understanding Financial System Dynamics 

(Oxford University Press, 2024).
	20.	 Lo, A. W., Marlowe, K. P. & Zhang, R. To maximize or randomize? An experimental study of probability matching in financial 

decision making. PLoS ONE 16, e0252540 (2021).
	21.	 Zhang, R., Brennan, T. J. & Lo, A. W. The origin of risk aversion. Proc. Natl. Acad. Sci. 111, 17777–17782 (2014).

Scientific Reports |        (2025) 15:31774 18| https://doi.org/10.1038/s41598-025-17089-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	22.	 Seger, J. & Brockman, H. J. What is bet-hedging?. Oxford Surverys in Evolutionary Biology 4, 182–211 (1987).
	23.	 Frank, S. A. Natural selection. I. Variable environments and uncertain returns on investment. J. Evol. Biol. 24, 2299–2309 (2011).
	24.	 Frank, S. A. Natural selection. II. Developmental variability and evolutionary rate. J. Evol. Biol. 24, 2310–2320 (2011).
	25.	 Frank, S. A. Natural selection. III. Selection versus transmission and the levels of selection. J. Evol. Biol. 25, 227–243 (2012).
	26.	 Cooper, W. S. & Kaplan, R. H. Adaptive “coin-flipping’’: a decision-theoretic examination of natural selection for random individual 

variation. J. Theor. Biol. 94, 135–151 (1982).
	27.	 Hawkins, J. & Blakeslee, S. On Intelligence (Macmillan, 2004).
	28.	 Lo, A. W. & Zhang, R. The evolutionary origin of Bayesian heuristics and finite memory. iScience24 (2021).
	29.	 Goodman, N. D., Tenenbaum, J. B., Feldman, J. & Griffiths, T. L. A rational analysis of rule-based concept learning. Cogn. Sci. 32, 

108–154 (2008).
	30.	 Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? optimal decisions from very few samples. Cogn. Sci. 38, 

599–637 (2014).
	31.	 Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychol. Sci. 17, 767–773 (2006).
	32.	 Sanborn, A. & Griffiths, T. Markov chain Monte Carlo with people. In Platt, J., Koller, D., Singer, Y. & Roweis, S. (eds.) Advances in 

Neural Information Processing Systems, vol. 20 (Curran Associates, Inc., 2007).
	33.	 Vul, E. & Pashler, H. Measuring the crowd within: Probabilistic representations within individuals. Psychol. Sci. 19, 645–647 

(2008).
	34.	 Griffiths, T.  L., Kemp, C. & Tenenbaum, J.  B. Bayesian Models of Cognition, 59–100. Cambridge Handbooks in Psychology 

(Cambridge University Press, 2008).
	35.	 Courville, A. C., Daw, N. D. & Touretzky, D. S. Bayesian theories of conditioning in a changing world. Trends Cogn. Sci. 10, 

294–300 (2006).
	36.	 Yuille, A. & Kersten, D. Vision as Bayesian inference: Analysis by synthesis?. Trends Cogn. Sci. 10, 301–308 (2006).
	37.	 Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 

350, 1332–1338 (2015).
	38.	 Körding, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).
	39.	 Steyvers, M., Griffiths, T. L. & Dennis, S. Probabilistic inference in human semantic memory. Trends Cogn. Sci. 10, 327–334 (2006).
	40.	 Oaksford, M. & Chater, N. The probabilistic approach to human reasoning. Trends Cogn. Sci. 5, 349–357 (2001).
	41.	 Baker, C.  L., Tenenbaum, J.  B. & Saxe, R.  R. Goal inference as inverse planning. In Proceedings of the Annual Meeting of the 

Cognitive Science Society, no. 29 in 29 (2007).
	42.	 Greaves, H. & Wallace, D. Justifying conditionalization: Conditionalization maximizes expected epistemic utility. Mind 115, 607–

632 (2006).
	43.	 Leitgeb, H. & Pettigrew, R. An objective justification of Bayesianism I: Measuring inaccuracy. Philos. Sci. 77, 201–235 (2010).
	44.	 Leitgeb, H. & Pettigrew, R. An objective justification of Bayesianism II: The consequences of minimizing inaccuracy. Philos. Sci. 77, 

236–272 (2010).
	45.	 Okasha, S. The evolution of Bayesian updating. Philos. Sci. 80, 745–757 (2013).
	46.	 Castellano, S. Bayes’ rule and bias roles in the evolution of decision making. Behav. Ecol. 26, 282–292 (2015).
	47.	 Campbell, J. O. Universal Darwinism as a process of Bayesian inference. Front. Syst. Neurosci. 10, 49 (2016).
	48.	 Bordalo, P., Coffman, K., Gennaioli, N. & Shleifer, A. Stereotypes. Q. J. Econ. 131, 1753–1794 (2016).
	49.	 Tversky, A. & Kahneman, D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol. Rev. 

90, 293 (1983).
	50.	 Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases: Biases in judgments reveal some heuristics of 

thinking under uncertainty. Science 185, 1124–1131 (1974).
	51.	 Petrov, V. V. Sums of Independent Random Variables, vol. 82 (Springer Science & Business Media, 2012).
	52.	 Boyle, P. P. & Lau, S. H. Bumping up against the barrier with the binomial method. J. Deriv. 1, 6–14 (1994).
	53.	 Brennan, T. J., Lo, A. W. & Zhang, R. Variety is the spice of life: Irrational behavior as adaptation to stochastic environments. Q. J. 

Financ. 8, 1850009 (2018).
	54.	 Anderson, E. The Imperative of Integration (Princeton University Press, 2010).
	55.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
	56.	 Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems, vol. 30 (2017).
	57.	 Frank, S. A. When to copy or avoid an opponent’s strategy. J. Theor. Biol. 145, 41–46 (1990).
	58.	 Lo, A. W., Orr, H. A. & Zhang, R. The growth of relative wealth and the Kelly criterion. J. Bioecon. 20, 49–67 (2018).
	59.	 McNamara, J. M. Implicit frequency dependence and kin selection in fluctuating environments. Evol. Ecol. 9, 185–203 (1995).
	60.	 Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–292 (1979).
	61.	 Gigerenzer, G., Todd, P. M., ABC Research Group. Simple Heuristics That Make Us Smart (Oxford University Press, 2000).
	62.	 Dayan, P. & Niv, Y. Reinforcement learning: The good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196 (2008).

Acknowledgements
Research support from the MIT Laboratory for Financial Engineering is gratefully acknowledged.

Author contributions
Andrew W. Lo and Ruixun Zhang conceived the idea, designed the study, and revised the manuscript. Chaoyi 
Zhao conducted the study, proposed and proved the theoretical results, and wrote the manuscript.

Funding
Ruixun Zhang acknowledges research funding from the National Key Research and Development Program of 
China [Grant 2022YFA1007900] and the National Natural Science Foundation of China [Grants 12271013, 
72342004].

Declarations

Competing interests
The authors declare no competing interests. 

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​7​0​8​9​-​9​​​​​.​​

Scientific Reports |        (2025) 15:31774 19| https://doi.org/10.1038/s41598-025-17089-9

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-17089-9
https://doi.org/10.1038/s41598-025-17089-9
http://www.nature.com/scientificreports


Correspondence and requests for materials should be addressed to C.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:31774 20| https://doi.org/10.1038/s41598-025-17089-9

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿The evolution of discrimination under finite memory constraints
	﻿The framework
	﻿A toy example
	﻿The formal model

	﻿Discrimination with infinite memory
	﻿Optimal probability of discrimination
	﻿Patterns of discrimination

	﻿Discrimination with finite memory


