
Supplementary material

In this supplementary material, we provide additional technical details regarding the objec-

tive function (1), as well as proofs for the propositions presented in the main article.

Technical details for the objective function (1)

This appendix provides technical details for the objective function that plays a central role

in our analysis—Equation (1). While these results have already been formally established

in prior work [16, 17, 21, 18], we reproduce them here for convenience and completeness.

The following proposition shows that, the exponential growth rate of the population size

of Andorians, T−1 log nT , converges in probability to the log-geometric-average growth rate

given by Equation (1).

Proposition A.1. Under the setup in “The formal model” section, we have

1

T
log nT

p→ µ(p) = E [log (pxdis + (1 − p)xnodis)]

as T and nT increase without bound, where “
p→” represents convergence in probability.

Proposition A.1 illustrates that, µ(p) given by Equation (1) is the long-run limit of the

growth rate of the population size for Andorians with a probability of discrimination p.

The following proposition further demonstrates that, Andorians with a probability of

discrimination p that maximize Equation (1) will, over time, dominate the population.

Proposition A.2. Under the setup in “The formal model” section, let p, p′ ∈ [0, 1] such that

µ(p) < µ(p′). Furthermore, let np
T and np′

T denote the number of Andorians in generation T

with probabilities of discrimination p and p′, respectively. Then, we have(
np
T

np′

T

)1/T

p→ exp (µ(p) − µ(p′)) < 1

as T and nT increase without bound, where “
p→” represents convergence in probability. Fur-

thermore, this implies that
np
T

np′

T

p→ 0

at an exponential rate.

Proposition A.2 illustrates that, maximizing Equation (1) leads to a “winner-take-all”

outcome, as individuals who do not maximize Equation (1) will be rapidly overrun by those
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who do. This result provides the theoretical foundation for our adoption of the log-geometric-

average growth rate as the objective function in our analysis.

Proofs

In this appendix, we provide proofs for the propositions stated in the previous appendix and

in the main article.

Proof of Proposition A.1. The number of offspring in generation t is the sum of all offspring

produced by individuals in the previous generation:

nt =

nt−1∑
i=1

xp
i,t =

(
nt−1∑
i=1

Ipi,t

)
xdis,t +

(
nt−1∑
i=1

(
1 − Ipi,t

))
xnodis,t,

where Ipi,t follow a Bernoulli distribution with parameter p and are independent over time t

and across individuals i. Using the Law of Large Numbers, we have∑nt−1

i=1 Ipi,t
nt−1

p→ p,

∑nt−1

i=1

(
1 − Ipi,t

)
nt−1

p→ 1 − p.

Under our setup in “The formal model” section, both xdis,t and xnodis,t are bounded. There-

fore,

nt

nt−1

− (pxdis,t + (1 − p)xnodis,t)

=

(∑nt−1

i=1 Ipi,t
nt−1

− p

)
xdis,t +

(∑nt−1

i=1

(
1 − Ipi,t

)
nt−1

− (1 − p)

)
xnodis,t

p→ 0.

Furthermore, under our setup, we have

L ≤ nt

nt−1

≤ U, L ≤ pxdis,t + (1 − p)xnodis,t ≤ U, (A.1)

where

L = min
{
λlow
A , λlow

T

}
> 0, U = max

{
λhigh
A , λhigh

T

}
> 0.

Thus, by Lagrange’s mean value theorem,

log

(
nt

nt−1

)
− log (pxdis,t + (1 − p)xnodis,t) =

[
nt

nt−1

− (pxdis,t + (1 − p)xnodis,t)

]
· 1

ξ

p→ 0
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with a random variable ξ ∈ [L,U ]. Averaging over t = 1, 2, . . . , T , we obtain

1

T

[
T∑
t=1

log

(
nt

nt−1

)
−

T∑
t=1

log (pxdis,t + (1 − p)xnodis,t)

]

=
1

T
log nT −

∑T
t=1 log (pxdis,t + (1 − p)xnodis,t)

T

p→ 0.

Again, by the Law of Large Numbers,∑T
t=1 log (pxdis,t + (1 − p)xnodis,t)

T

p→ µ(p) = E [log (pxdis + (1 − p)xnodis)] .

Therefore,
1

T
log nT

p→ µ(p) = E [log (pxdis + (1 − p)xnodis)] ,

which completes the proof.

Proof of Proposition A.2. Using Proposition A.1, we have

1

T
log np

T

p→ µ(p),
1

T
log np′

T

p→ µ(p′).

Therefore,
1

T
log np

T − 1

T
log np′

T

p→ µ(p) − µ(p′).

Taking exponentials on both sides yields the result.

Proof of Proposition 1. We maximize Equation (1) over p. Direct calculation shows that

∂µ

∂p
(p) = E

[
xdis − xnodis

pxdis + (1 − p)xnodis

]
(A.2)

and
∂2µ

∂p2
(p) = −E

[
(xdis − xnodis)

2

(pxdis + (1 − p)xnodis)2

]
< 0.

This implies that Equation (1) is concave with respect to p. From Equation (A.2), we have

∂µ

∂p
(0) = E

[
xdis

xnodis

]
− 1,

∂µ

∂p
(1) = 1 − E

[
xnodis

xdis

]
.

Therefore, if both ∂µ
∂p

(0) > 0 and ∂µ
∂p

(1) > 0, Equation (1) is increasing with respect to p and

the optimal solution is p∗ = 1; if both ∂µ
∂p

(0) < 0 and ∂µ
∂p

(1) < 0, Equation (1) is decreasing

with respect to p and the optimal solution is p∗ = 0. Finally, if both ∂µ
∂p

(0) ≥ 0 and ∂µ
∂p

(1) ≤ 0,
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the optimal p∗ is reached when Equation (A.2) is equal to zero. This completes the proof.

Proof of Proposition 2. By direct calculation, the growth rate in Equation (1) is

µ(p) =E [log (pxdis + (1 − p)xnodis)]

=E [log [p(βdis − βnodis)(λT − λA) + βnodisλT + (1 − βnodis)λA]]

=qr log λlow + (1 − q)(1 − r) log λhigh

+ q(1 − r) log
[
(βdis − βnodis)(λ

high − λlow)p + βnodisλ
high + (1 − βnodis)λ

low
]

+ (1 − q)r log
[
(βdis − βnodis)(λ

low − λhigh)p + βnodisλ
low + (1 − βnodis)λ

high
]
.

Thus,

∂µ

∂p
(p) =q(1 − r)

(βdis − βnodis)(λ
high − λlow)

p(βdis − βnodis)(λhigh − λlow) + βnodisλhigh + (1 − βnodis)λlow

+ (1 − q)r
(βdis − βnodis)(λ

low − λhigh)

p(βdis − βnodis)(λlow − λhigh) + βnodisλlow + (1 − βnodis)λhigh
.

According to the proof of Proposition 1, we have ∂2µ
∂p2

(p) < 0, implying that ∂µ
∂p

(p) is decreasing

with respect to p. Therefore, if ∂µ
∂p

(1) > 0, we have ∂µ
∂p

(p) > 0 and the optimal solution is

p∗ = 1; if ∂µ
∂p

(0) < 0, we have ∂µ
∂p

(p) < 0 and the optimal solution is p∗ = 0. One can directly

verify that ∂µ
∂p

(1) > 0 is equivalent to r > rupper, and ∂µ
∂p

(0) < 0 is equivalent to r < rlower.

Finally, ∂µ
∂p

(0) ≥ 0 and ∂µ
∂p

(1) ≤ 0 are equivalent to rlower ≤ r ≤ rupper, and in this case, the

optimal solution is reached when ∂µ
∂p

(p∗) = 0, which is equivalent to p∗(q, r) = p∗partial(q, r).

This completes the proof.

Proof of Proposition 3. One can directly prove this result by, for example, calculating the

partial derivatives of p∗partial(q, r) with respect to r and q, respectively.

Proof of Proposition 4. Using Bayes’ formula, the posterior probabilities are

P(r = r0|λ1
T , . . . , λ

N
T ) =

P(r = r0)P(λ1
T , . . . , λ

N
T |r = r0)

P(r = r0)P(λ1
T , . . . , λ

N
T |r = r0) + P(r = r1)P(λ1

T , . . . , λ
N
T |r = r1)

=
π0r

m
0 (1 − r0)

N−m

π0rm0 (1 − r0)N−m + π1rm1 (1 − r1)N−m

and

P(r = r1|λ1
T , . . . , λ

N
T ) = 1 − P(r = r0|λ1

T , . . . , λ
N
T ) =

π1r
m
1 (1 − r1)

N−m

π0rm0 (1 − r0)N−m + π1rm1 (1 − r1)N−m
.
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Therefore, the Bayesian estimation of r∗ is given by Equation (7).

Proof of Proposition 5. The conditional expectation can be computed by

E
[
log (pxdis + (1 − p)xnodis) |λ1

T , λ
2
T , . . . , λ

N
T

]
=E

[
log [p (βdisλT + (1 − βdis)λA) + (1 − p) (βnodisλT + (1 − βnodis)λA)] |λ1

T , λ
2
T , . . . , λ

N
T

]
=qE[r|λ1

T , λ
2
T , . . . , λ

N
T ]

· log
[
p
(
βdisλ

low
T + (1 − βdis)λ

low
A

)
+ (1 − p)

(
βnodisλ

low
T + (1 − βnodis)λ

low
A

)]
+ q(1 − E[r|λ1

T , λ
2
T , . . . , λ

N
T ])

· log
[
p
(
βdisλ

high
T + (1 − βdis)λ

low
A

)
+ (1 − p)

(
βnodisλ

high
T + (1 − βnodis)λ

low
A

)]
+ (1 − q)E[r|λ1

T , λ
2
T , . . . , λ

N
T ]

· log
[
p
(
βdisλ

low
T + (1 − βdis)λ

high
A

)
+ (1 − p)

(
βnodisλ

low
T + (1 − βnodis)λ

high
A

)]
+ (1 − q)(1 − E[r|λ1

T , λ
2
T , . . . , λ

N
T ])

· log
[
p
(
βdisλ

high
T + (1 − βdis)λ

high
A

)
+ (1 − p)

(
βnodisλ

high
T + (1 − βnodis)λ

high
A

)]
.

This is exactly the (unconditional) expected growth rate defined by Equation (1) with r

replaced by E[r|λ1
T , λ

2
T , . . . , λ

N
T ]. Therefore, the optimal solution is p∗

(
q, r̂N(λ1

T , λ
2
T , . . . , λ

N
T )
)
.

Proof of Proposition 6. This result holds because p̂∗N(λ1
T , λ

2
T , . . . , λ

N
T ) given by Equation (8)

depends on r̂N(λ1
T , λ

2
T , . . . , λ

N
T ) given by Equation (7), which further relies on m, the number

of Tellarians observed with adverse events. Because λ1
T , λ

2
T , . . . , λ

N
T are IID, m follows a

binomial distribution with parameters N and r∗. This proves the result.

Proof of Proposition 7. We first prove Equation (12) for the case of r∗ < r̃. For r̂N given by

Equation (7), we have

r̂N =
π0r

m
0 (1 − r0)

N−mr0 + π1r
m
1 (1 − r1)

N−mr1
π0rm0 (1 − r0)N−m + π1rm1 (1 − r1)N−m

=
r0 + π1

π0

(
r1
r0

)m (
1−r1
1−r0

)N−m

r1

1 + π1

π0

(
r1
r0

)m (
1−r1
1−r0

)N−m
. (A.3)

Because m follows a binomial distribution with parameters N and r∗, by the strong law of
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large numbers, we have

1

N
log

[(
r1
r0

)m(
1 − r1
1 − r0

)N−m
]

=
m

N
log

r1
r0

+
N −m

N
log

1 − r1
1 − r0

a.s.→ r∗ log
r1
r0

+ (1 − r∗) log
1 − r1
1 − r0

.

When r∗ < r̃, the limit above is smaller than zero. Hence, as N increases without bound,(
r1
r0

)m(
1 − r1
1 − r0

)N−m
a.s.→ 0,

and therefore, r̂N
a.s.→ r0. The proof for the case of r∗ > r̃ is similar, which we omit.

Next we prove Equation (13). By the central limit theorem,

√
N ·

m
N
− r∗√

r∗(1 − r∗)

d→ N (0, 1).

Thus, using the fact that

1

N
log

[(
r1
r0

)m(
1 − r1
1 − r0

)N−m
]

=
m

N
log

r1
r0

+
N −m

N
log

1 − r1
1 − r0

=

(
log

r1
r0

+ log
1 − r0
1 − r1

)
m

N
+ log

1 − r1
1 − r0

,

we have

√
N ·

1
N

log

[(
r1
r0

)m (
1−r1
1−r0

)N−m
]
−
[
r∗
(

log r1
r0

+ log 1−r0
1−r1

)
+ log 1−r1

1−r0

]
√

r∗(1 − r∗)
(

log r1
r0

+ log 1−r0
1−r1

)2 d→ N (0, 1). (A.4)

Furthermore, Equation (A.3) implies that(
r1
r0

)m(
1 − r1
1 − r0

)N−m

=
π0

π1

· r̂N − r1
r0 − r̂N

,

and combining this with Equation (A.4) leads to Equation (13).
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Finally, for any x ∈ (r0, r1),

P (r̂N ≤ x) = P

(
log r̂N−r0

r1−r̂N
+ log π0

π1
−N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(

log r1
r0

+ log 1−r0
1−r1

)2
≤

log x−r0
r1−x

+ log π0

π1
−N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(

log r1
r0

+ log 1−r0
1−r1

)2
)

≈ Φ

 log x−r0
r1−x

+ log π0

π1
−N

[
r∗ log r1

r0
− (1 − r∗) log 1−r0

1−r1

]
√

Nr∗(1 − r∗)
(

log r1
r0

+ log 1−r0
1−r1

)2
 ,

where Φ is the distribution function of N (0, 1). Taking the derivative with respect to x leads

to Equation (14).

Proof of Proposition 8. According to Equation (8), we have p̂∗N = p∗(q, r̂N). Thus, due to

the fact that r̂N
a.s.→ r̂∞ as N increases without bound and p∗(·, ·) is a continuous function,

Equation (15) holds.

If rlower < r̂∞ < rupper, by Proposition 2, for sufficiently large N , we have

p∗N =
[βnodisλ

high + (1 − βnodis)λ
low](1 − q)r̂N − [βnodisλ

low + (1 − βnodis)λ
high]q(1 − r̂N)

(βnodis − βdis)(λhigh − λlow)(q + r̂N − 2qr̂N)
,

which implies that

r̂N =
A + Bp̂∗N
Cp̂∗N + D

.

Combining this with Equation (13) leads to Equation (16). Finally, the proof of Equation

(17) is similar to that for Equation (14), and therefore we omit the proof.

Proof of Proposition 9. Because p∗(q, r∗) = argmaxp µ(p), we have µ
(
p̂∗N(λ1

T , λ
2
T , . . . , λ

N
T )
)
≤

µ (p∗(q, r∗)). Hence, by taking expectations of both sides, E
[
µ
(
p̂∗N(λ1

T , λ
2
T , . . . , λ

N
T )
)]

≤
µ (p∗(q, r∗)). In addition, µ (p̂∗∞(λ1

T , λ
2
T , . . . )) = µ (p∗(q, r∗)) holds because of Propositions 7

and 8.

Proof of Proposition 10. Without loss of generality, let us assume rm > r∗. After incor-

porating mutations, the new unconditional probability of adverse events for Tellarians is
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r∗∗ = pmrm + (1 − pm)r∗ > r∗. Define

µ(p, q, r∗∗) =qr∗∗ log λlow + (1 − q)(1 − r∗∗) log λhigh

+ q(1 − r∗∗) log
[
(βdis − βnodis)(λ

high − λlow)p + βnodisλ
high + (1 − βnodis)λ

low
]

+ (1 − q)r∗∗ log
[
(βdis − βnodis)(λ

low − λhigh)p + βnodisλ
low + (1 − βnodis)λ

high
]
,

which is the expected growth rate under Assumption 1, as given in the proof of Proposition

2. The key to this proof is considering the following function:

f(ϱ) = µ(p∗(q, ϱ), q, r∗∗), ϱ ∈ (0, 1),

where p∗(·, ·) is given by Equation (4). By the definition of p∗(·, ·) and the strict concavity of

µ(p, q, r∗∗) with respect to p (see the proof of Proposition 2), f(ϱ) reaches its highest value

if and only if p∗(q, ϱ) = p∗(q, r∗∗). Our goal is to prove E[f(r̂N)] > f(r̂∞) for some N .

Now we prove the result under the following claim:

Claim. We can always find parameters such that

rlower < r∗∗ < rupper, (A.5)

and

r∗ = rlower, (A.6)

where rlower and rupper are defined in Proposition 2.

Under this claim, p∗(q, ϱ) is strictly increasing with respect to ϱ (Proposition 3). There-

fore, f(ϱ) is strictly increasing when ϱ ∈ (rlower, r
∗∗) and strictly decreasing when ϱ ∈

(r∗∗, rlower). In addition, for ϱ ≤ rlower, we have f(ϱ) = f(rlower), and for ϱ ≥ rupper, we

have f(ϱ) = f(rupper).

Case 1. If f(rlower) ≥ f(rupper), let r0 = r∗ = rlower and r1 ∈ (r∗∗, rupper] such that

f(r1) = f(r0). By Proposition 4, for any N and any π0, π1 ∈ (0, 1), we have r̂N ∈ (r0, r1).

This implies that f(r̂N) > f(r1) = f(r0). Therefore, due to the fact that r̂∞ ∈ {r0, r1}
(Proposition 7), we have f(r̂N) > f(r̂∞), which further implies E[f(r̂N)] > f(r̂∞).
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Case 2. If f(rlower) < f(rupper), let r0 = r∗ = rlower and r1 = rupper. Consider the case of

N = 1. We have

r̂1 =

r̂−1 :=
π0r20+π1r21
π0r0+π1r1

, λ1
T = λlow

T ,

r̂+1 := π0(1−r0)r0+π1(1−r1)r1
π0(1−r0)+π1(1−r1)

, λ1
T = λhigh

T .

It is easy to verify that r0 < r̂−1 < r̂+1 < r1. We select π0 and π1 such that r̂−1 > r′, where

r′ ∈ (rlower, r
∗∗) satisfies f(r′) = f(rupper) = f(r1). Hence, we have both f(r̂−1 ) > f(r1) >

f(r0) and f(r̂+1 ) > f(r1) > f(r0). Therefore, due to the fact that r̂∞ ∈ {r0, r1} (Proposition

7), we have f(r̂1) > f(r̂∞), which further implies E[f(r̂1)] > f(r̂∞).

We finally prove the claim. By direct calculation and the fact of r∗ < r∗∗, Equations

(A.5) and (A.6) are equivalent to

βdis <
[(1 − r∗∗)λhigh + r∗∗λlow]q − r∗∗λlow

(λhigh − λlow)(r∗∗ + q − 2r∗∗q)
(A.7)

and

βnodis =
[(1 − r∗)λhigh + r∗λlow]q − r∗λlow

(λhigh − λlow)(r∗ + q − 2r∗q)
. (A.8)

Furthermore, it is easy to verify that both right-hand sides of Equations (A.7) and (A.8)

being smaller than 1 is equivalent to

q <
λhighr∗∗

λlow(1 − r∗∗) + λhighr∗∗
, q <

λhighr∗

λlow(1 − r∗) + λhighr∗
. (A.9)

Therefore, to satisfy Equations (A.5) and (A.6), first, we set λhigh = 1. Second, we select q

satisfying

0 < q < min

{
λhighr∗∗

1 − r∗∗ + λhighr∗∗
,

λhighr∗

1 − r∗ + λhighr∗

}
,

which further satisfies Equation (A.9). Third, we select λlow ∈ (0, 1) small enough such that

the right hand sides of Equations (A.7) and (A.8) are both greater than 0. Finally, we select

βdis, βnodis ∈ (0, 1) satisfying Equations (A.7) and (A.8). This completes the proof.
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